Penerapan Metode Fuzzy Tsukamoto Untuk Memprediksi Kebutuhan Praproduksi Pengolahan Tempe


  • Fifto Nugroho * Mail Universitas Bung Karno, Jakarta, Indonesia
  • Anissa Al Fatika Putri Yusup Universitas Bung Karno, Jakarta, Indonesia
  • Maria Fatima Awul Universitas Bung Karno, Jakarta, Indonesia
  • Rosa Angelina Babys Universitas Bung Karno, Jakarta, Indonesia
  • (*) Corresponding Author
Keywords: Preproduction Predictions; Fuzzy Logic; Tsukamoto; Tempeh Manufacturer; Fuzzy Inference System

Abstract

As a staple food in Indonesia, people from various socio-economic backgrounds enjoy tempeh. Due to the popularity of tempeh and its low price, its health benefits have been widely recognized. Tempe production is still dominated by home-based businesses. Due to the ever-increasing demand, the Jakasampurna tempeh entrepreneurs, in the West Bekasi region, must balance the efficient production rate by maintaining the best quality of tempeh. The impact that occurs during pre-production related to the purchase of raw materials for making tempeh causes a lack of availability of basic ingredients for tempeh, even the difference is too large, the risk of ingredients being wasted. The research is intended to help micro business tempeh producers gain efficiency when processing tempeh, by offering management and production advice based on the valid data provided. This study uses a fuzzy inference system based on the Tsukamoto technique. In-depth conversations and direct observations at the tempe factory, provide sources of information data for calculations. This study examines the role of three (3) variables-demand (X), supply (Y), and output (Z)-in the processing and production of tempeh (Z). In a situation where the value of X (demand) and Y (supply) is uncertain, and Z (output) can go up or down, this means that the three variables give results where the uncertainty is not considerable enough. The results on the fuzzy set go up and down at stock (Y). Production (Z) consists of many and few fuzzy groups. The predicted amount of tempeh output, if it is known from the data with a demand of 1595 and an existing stock of 85, then a total of 1770 will be produced, thus the production rate becomes efficient by continuing to follow the recommended production amount, then there is little risk of accumulation of basic material storage because what is used is according to demand and the use of soy-based ingredients is always fresh.

Downloads

Download data is not yet available.

References

R. Krisdiana dan others, “Preferensi industri tahu dan tempe terhadap ukuran dan warna biji kedelai,” 2018.

S. N. S. Nurmuslimah, “Aplikasi Fuzzy Logic Mamdani Untuk Menghitung Jumlah Produksi Tempe,” in Prosiding Seminar Nasional Sains dan Teknologi Terapan, 2016, hal. 33–40.

A. Alvina dan D. H. Hamdani, “Proses Pembuatan Tempe Tradisional,” J. Ilm. Pangan Halal, vol. 1, no. 1, 2019.

A. Prasetyo, E. Hartoyo, dan others, “Analisis Resiko Usaha Industri Tempe Di Kota Surakarta,” J. Ilm. Agrineca, vol. 21, no. 2, hal. 84–90, 2021.

L. Hanim, E. Soponyono, dan M. Maryanto, “Pengembangan UMKM Digital di Masa Pandemi Covid-19,” in Prosiding Seminar Nasional Penelitian Dan Pengabdian Kepada Masyarakat, 2021, vol. 2, no. 1, hal. 30–39.

R. Taufiq, “Rancang Bangun Sistem Pendukung Keputusan Penentuan Jumlah Produksi Menggunakan Metode Fuzzy Tsukamoto,” J. Tek., vol. 8, no. 1, 2019.

V. M. Nasution dan G. Prakarsa, “Optimasi Produksi Barang Menggunakan Logika Fuzzy Metode Mamdani,” J. Media Inform. Budidarma, vol. 4, no. 1, hal. 129–135, 2020.

A. P. Kusuma, W. D. Puspitasari, dan T. Gustiyoto, “Sistem pendukung keputusan dalam menentukan jumlah produksi seragam menggunakan metode fuzzy tsukamoto,” Antivirus J. Ilm. Tek. Inform., vol. 12, no. 1, 2018.

A. Prayogi, “Sistem pendukung keputusan untuk penentuan jumlah produksi nanas menggunakan metode fuzzy tsukamoto,” Skripsi). Malang Univ. Brawijaya, 2017.

S. Hajar, M. Badawi, Y. D. Setiawan, M. N. H. Siregar, dan A. P. Windarto, “Prediksi Perhitungan Jumlah Produksi Tahu Mahanda dengan Teknik Fuzzy Sugeno,” J-Sakti (Jurnal Sains Komput. dan Inform., vol. 4, no. 1, hal. 210–219, 2020.

P. Hájek, L. Godo, dan F. Esteva, “Fuzzy logic and probability,” arXiv Prepr. arXiv1302.4953, 2013.

P. Gupta, M. K. Mehlawat, M. Inuiguchi, dan S. Chandra, Fuzzy portfolio optimization: advances in hybrid multi-criteria methodologies, vol. 316. Springer, 2014.

F. M. McNeill dan E. Thro, Fuzzy logic: a practical approach. Academic Press, 2014.

H. T. Nguyen, C. Walker, dan E. A. Walker, A first course in fuzzy logic. Chapman and Hall/CRC, 2018.

C. W. De Silva, Intelligent control: fuzzy logic applications. CRC press, 2018.

M. Rusli, Dasar Perancangan Kendali Logika Fuzzy. Universitas Brawijaya Press, 2017.

D. Pekaslan, J. M. Garibaldi, dan C. Wagner, “Exploring subsethood to determine firing strength in non-singleton fuzzy logic systems,” in 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2018, hal. 1–8.

R. E. Prasetyo, W. D. Sayekti, dan E. Kasymir, “Tingkat Kepuasan dan Faktor-Faktor Yang Mempengaruhi Permintaan Tempe Oleh Konsumen Rumah Tangga Di Kota Bandar Lampung,” J. Ilmu Ilmu Agribisnis J. Agribus. Sci., vol. 6, no. 4, hal. 368–375, 2019.

T. Tundo dan E. I. Sela, “Application of the fuzzy inference system method to predict the number of weaving fabric production,” IJID (International J. Informatics Dev., vol. 7, no. 1, hal. 21–29, 2018.

R. A. Wibowo et al., “Sistem Pendukung Keputusan Pemberian Kredit Menggunakan Fuzzy Inference System ( FIS ) Tsukamoto,” vol. 1, no. 1, hal. 34–39, 2018.

S. Thaker dan V. Nagori, “Analysis of fuzzification process in fuzzy expert system,” Procedia Comput. Sci., vol. 132, hal. 1308–1316, 2018.

C. C. Ragin, “From fuzzy sets to crisp truth tables,” Comp. Methods Adv. Syst. cross-case Anal. Small-N Stud., 2005.

N. S. Pinem dan D. P. Utomo, “Implementasi Fuzzy Logic Dengan Infrensi Tsukamoto Untuk Prediksi Jumlah Kemasan Produksi (Studi Kasus: PT. Sinar Sosro Medan),” Pelita Inform. Inf. dan Inform., vol. 9, no. 1, hal. 56–60, 2020.

S. Chakraverty, D. M. Sahoo, N. R. Mahato, S. Chakraverty, D. M. Sahoo, dan N. R. Mahato, “Defuzzification,” Concepts Soft Comput. Fuzzy ANN with Program., hal. 117–127, 2019.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Penerapan Metode Fuzzy Tsukamoto Untuk Memprediksi Kebutuhan Praproduksi Pengolahan Tempe

Dimensions Badge
Article History
Submitted: 2023-03-08
Published: 2023-03-31
Abstract View: 489 times
PDF Download: 656 times
How to Cite
Nugroho, F., Putri Yusup, A., Awul, M., & Babys, R. (2023). Penerapan Metode Fuzzy Tsukamoto Untuk Memprediksi Kebutuhan Praproduksi Pengolahan Tempe. Building of Informatics, Technology and Science (BITS), 4(4), 1925−1932. https://doi.org/10.47065/bits.v4i4.3217
Issue
Section
Articles

Most read articles by the same author(s)