Penerapan Metode Fuzzy Tsukamoto Untuk Memprediksi Kebutuhan Praproduksi Pengolahan Tempe
Abstract
As a staple food in Indonesia, people from various socio-economic backgrounds enjoy tempeh. Due to the popularity of tempeh and its low price, its health benefits have been widely recognized. Tempe production is still dominated by home-based businesses. Due to the ever-increasing demand, the Jakasampurna tempeh entrepreneurs, in the West Bekasi region, must balance the efficient production rate by maintaining the best quality of tempeh. The impact that occurs during pre-production related to the purchase of raw materials for making tempeh causes a lack of availability of basic ingredients for tempeh, even the difference is too large, the risk of ingredients being wasted. The research is intended to help micro business tempeh producers gain efficiency when processing tempeh, by offering management and production advice based on the valid data provided. This study uses a fuzzy inference system based on the Tsukamoto technique. In-depth conversations and direct observations at the tempe factory, provide sources of information data for calculations. This study examines the role of three (3) variables-demand (X), supply (Y), and output (Z)-in the processing and production of tempeh (Z). In a situation where the value of X (demand) and Y (supply) is uncertain, and Z (output) can go up or down, this means that the three variables give results where the uncertainty is not considerable enough. The results on the fuzzy set go up and down at stock (Y). Production (Z) consists of many and few fuzzy groups. The predicted amount of tempeh output, if it is known from the data with a demand of 1595 and an existing stock of 85, then a total of 1770 will be produced, thus the production rate becomes efficient by continuing to follow the recommended production amount, then there is little risk of accumulation of basic material storage because what is used is according to demand and the use of soy-based ingredients is always fresh.
Downloads
References
R. Krisdiana dan others, “Preferensi industri tahu dan tempe terhadap ukuran dan warna biji kedelai,” 2018.
S. N. S. Nurmuslimah, “Aplikasi Fuzzy Logic Mamdani Untuk Menghitung Jumlah Produksi Tempe,” in Prosiding Seminar Nasional Sains dan Teknologi Terapan, 2016, hal. 33–40.
A. Alvina dan D. H. Hamdani, “Proses Pembuatan Tempe Tradisional,” J. Ilm. Pangan Halal, vol. 1, no. 1, 2019.
A. Prasetyo, E. Hartoyo, dan others, “Analisis Resiko Usaha Industri Tempe Di Kota Surakarta,” J. Ilm. Agrineca, vol. 21, no. 2, hal. 84–90, 2021.
L. Hanim, E. Soponyono, dan M. Maryanto, “Pengembangan UMKM Digital di Masa Pandemi Covid-19,” in Prosiding Seminar Nasional Penelitian Dan Pengabdian Kepada Masyarakat, 2021, vol. 2, no. 1, hal. 30–39.
R. Taufiq, “Rancang Bangun Sistem Pendukung Keputusan Penentuan Jumlah Produksi Menggunakan Metode Fuzzy Tsukamoto,” J. Tek., vol. 8, no. 1, 2019.
V. M. Nasution dan G. Prakarsa, “Optimasi Produksi Barang Menggunakan Logika Fuzzy Metode Mamdani,” J. Media Inform. Budidarma, vol. 4, no. 1, hal. 129–135, 2020.
A. P. Kusuma, W. D. Puspitasari, dan T. Gustiyoto, “Sistem pendukung keputusan dalam menentukan jumlah produksi seragam menggunakan metode fuzzy tsukamoto,” Antivirus J. Ilm. Tek. Inform., vol. 12, no. 1, 2018.
A. Prayogi, “Sistem pendukung keputusan untuk penentuan jumlah produksi nanas menggunakan metode fuzzy tsukamoto,” Skripsi). Malang Univ. Brawijaya, 2017.
S. Hajar, M. Badawi, Y. D. Setiawan, M. N. H. Siregar, dan A. P. Windarto, “Prediksi Perhitungan Jumlah Produksi Tahu Mahanda dengan Teknik Fuzzy Sugeno,” J-Sakti (Jurnal Sains Komput. dan Inform., vol. 4, no. 1, hal. 210–219, 2020.
P. Hájek, L. Godo, dan F. Esteva, “Fuzzy logic and probability,” arXiv Prepr. arXiv1302.4953, 2013.
P. Gupta, M. K. Mehlawat, M. Inuiguchi, dan S. Chandra, Fuzzy portfolio optimization: advances in hybrid multi-criteria methodologies, vol. 316. Springer, 2014.
F. M. McNeill dan E. Thro, Fuzzy logic: a practical approach. Academic Press, 2014.
H. T. Nguyen, C. Walker, dan E. A. Walker, A first course in fuzzy logic. Chapman and Hall/CRC, 2018.
C. W. De Silva, Intelligent control: fuzzy logic applications. CRC press, 2018.
M. Rusli, Dasar Perancangan Kendali Logika Fuzzy. Universitas Brawijaya Press, 2017.
D. Pekaslan, J. M. Garibaldi, dan C. Wagner, “Exploring subsethood to determine firing strength in non-singleton fuzzy logic systems,” in 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2018, hal. 1–8.
R. E. Prasetyo, W. D. Sayekti, dan E. Kasymir, “Tingkat Kepuasan dan Faktor-Faktor Yang Mempengaruhi Permintaan Tempe Oleh Konsumen Rumah Tangga Di Kota Bandar Lampung,” J. Ilmu Ilmu Agribisnis J. Agribus. Sci., vol. 6, no. 4, hal. 368–375, 2019.
T. Tundo dan E. I. Sela, “Application of the fuzzy inference system method to predict the number of weaving fabric production,” IJID (International J. Informatics Dev., vol. 7, no. 1, hal. 21–29, 2018.
R. A. Wibowo et al., “Sistem Pendukung Keputusan Pemberian Kredit Menggunakan Fuzzy Inference System ( FIS ) Tsukamoto,” vol. 1, no. 1, hal. 34–39, 2018.
S. Thaker dan V. Nagori, “Analysis of fuzzification process in fuzzy expert system,” Procedia Comput. Sci., vol. 132, hal. 1308–1316, 2018.
C. C. Ragin, “From fuzzy sets to crisp truth tables,” Comp. Methods Adv. Syst. cross-case Anal. Small-N Stud., 2005.
N. S. Pinem dan D. P. Utomo, “Implementasi Fuzzy Logic Dengan Infrensi Tsukamoto Untuk Prediksi Jumlah Kemasan Produksi (Studi Kasus: PT. Sinar Sosro Medan),” Pelita Inform. Inf. dan Inform., vol. 9, no. 1, hal. 56–60, 2020.
S. Chakraverty, D. M. Sahoo, N. R. Mahato, S. Chakraverty, D. M. Sahoo, dan N. R. Mahato, “Defuzzification,” Concepts Soft Comput. Fuzzy ANN with Program., hal. 117–127, 2019.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Metode Fuzzy Tsukamoto Untuk Memprediksi Kebutuhan Praproduksi Pengolahan Tempe
Pages: 1925−1932
Copyright (c) 2023 Fifto Nugroho, Anissa Al Fatika Putri Yusup, Maria Fatima Awul, Rosa Angelina Babys

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).