Implementasi Transfer Learning Pada Algoritma Convolutional Neural Network untuk Mengklasifikasikan Image Objek Wisata


  • Mira Mira * Mail Universitas Kristen Satya Wacana, Salatiga, Indonesia
  • Irwan Sembiring Universitas Kristen Satya Wacana, Salatiga, Indonesia
  • Hindriyanto Dwi Purnomo Universitas Kristen Satya Wacana, Salatiga, Indonesia
  • (*) Corresponding Author
Keywords: Transfer Learning; Convolutional Neural Network; Classification; Multi-Label; Tourist Attraction

Abstract

This study classifies the image of a tourist attraction with 9 labels sky, tree, mountain, water, street, temple, garden, stone and ricefield. The results of multi-label labeling can be used to see the frequency and recommendations of tourist attractions in Central Java, and build a transfer learning model to determine the accuracy value. Classification with multi-label images has its own complexity in the labeling process and few people use it. Testing and evaluating the model uses the equation of accuracy and f-1 score. Several previous researchers also stated that the higher the amount of training data and the number of epochs per step, the higher the accuracy produced. Based on the results of training and evaluation of the four training processes, that 210 data using bs 8, lr 1e-3 and epoch 50 showed an accuracy of 0.8598 with a loss of 0.3245, while 290 data with bs 16, lr 1e-3 and epoch 50 showed an accuracy of 0.8685. with a loss of 0.2903. Then 594 data with bs 32, lr 1e-3 and epoch 50 showed an accuracy of 0.8852 with a loss of 0.2756, and 1000 data with bs 46, lr 1e-3 and epoch 50 showed an accuracy of 0.8833 with a loss of 0.2863. This can answer the statement that the greater the number of datas, the higher the accuracy produced, so that the transfer learning model on the ResNet-50 architecture with multi-label image datas can be applied by showing accuracy results close to the accuracy value on ResNet-50 in the imagenet project. In addition, the contribution of this research is to provide recommendations for potential tourist objects in Central Java, namely tourism objects with the theme of nature, then tourism processed by human hands such as historical places, cultural heritage and family recreation areas.

Downloads

Download data is not yet available.

References

D. Vaya and T. Hadpawat, “Classification in Data Mining : A Survey,” vol. 29, no. 3, pp. 13072–13078, 2020.

S. A. Shahriyar, K. M. Rokibul Alam, S. S. Roy, and Y. Morimoto, “An Approach for Multi Label Image Classification Using Single Label Convolutional Neural Network,” 2018 21st Int. Conf. Comput. Inf. Technol. ICCIT 2018, no. December, 2019, doi: 10.1109/ICCITECHN.2018.8631970.

T. Bariyah, M. A. Rasyidi, and N. Ngatini, “Convolutional Neural Network untuk Metode Klasifikasi Multi-Label pada Motif Batik,” Techno.Com, vol. 20, no. 1, pp. 155–165, 2021, doi: 10.33633/tc.v20i1.4224.

C. U. K. Enie Yuliani1, Afifah Nur Aini2, “Perbandingan Jumlah Epoch Dan Steps Per Epoch Pada Convolutional Neural Network Untuk Meningkatkan Akurasi Dalam Klasifikasi Gambar,” J. Inf. Politek. Indonusa Surakarta ISSN, vol. 5, no. 3, pp. 23–27, 2019.

F. Ratnawati, “Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Film Pada Twitter,” INOVTEK Polbeng - Seri Inform., vol. 3, no. 1, p. 50, 2018, doi: 10.35314/isi.v3i1.335.

S. N. Kane, A. Mishra, and A. K. Dutta, “Preface: International Conference on Recent Trends in Physics (ICRTP 2016),” J. Phys. Conf. Ser., vol. 755, no. 1, 2016, doi: 10.1088/1742-6596/755/1/011001.

J. Rozaqi, A. Sunyoto, and R. Arief, “Implementasi Transfer Learning pada Algoritma Convolutional Neural Network Untuk Identifikasi Penyakit Daun Kentang Implementation of Transfer Learning in the Convolutional Neural Network Algorithm for Identification of Potato Leaf Disease,” Procedia Eng. Life Sci., vol. 1, no. 1, 2021, [Online]. Available: https://press.umsida.ac.id/index.php/PELS/article/view/820/478.

M. A. H. Abas, N. Ismail, A. I. M. Yassin, and M. N. Taib, “VGG16 for plant image classification with transfer learning and data augmentation,” Int. J. Eng. Technol., vol. 7, no. 4, pp. 90–94, 2018, doi: 10.14419/ijet.v7i4.11.20781.

F. Nashrullah, S. Adhi, and G. Budiman, “Investigasi Parameter Epoch Pada Arsitektur ResNet- 50 Untuk Klasifikasi Pornografi,” J. Comput. Electron. Telecommun., vol. 1, no. 1, pp. 1–8, 2020.

B. Zhao, “Encyclopedia of Big Data,” Encycl. Big Data, no. December, 2020, doi: 10.1007/978-3-319-32001-4.

R. Wightman, H. Touvron, and H. Jégou, “ResNet strikes back: An improved training procedure in timm,” Cornel Univ., vol. 1, no. october, pp. 1–22, 2021, [Online]. Available: http://arxiv.org/abs/2110.00476.

P. M. Radiuk, “Impact of Training Set Batch Size on the Performance of Convolutional Neural Networks for Diverse Datasets,” Inf. Technol. Manag. Sci., vol. 20, no. 1, pp. 20–24, 2018, doi: 10.1515/itms-2017-0003.

T. Bezdan and N. Bačanin Džakula, “Convolutional Neural Network Layers and Architectures,” Int. Sci. Conf. Inf. Technol. DATA Relat. Res., no. January, pp. 445–451, 2019, doi: 10.15308/sinteza-2019-445-451.

V. Kumar and M. L., “Deep Learning as a Frontier of Machine Learning: A Review,” Int. J. Comput. Appl., vol. 182, no. 1, pp. 22–30, 2018, doi: 10.5120/ijca2018917433.

S. Jadon, “A survey of loss functions for semantic segmentation,” IEEE Access, vol. 2, no. 11, 2020.

G. Tika and Adiwijaya, “Klasifikasi Topik Berita Berbahasa Indonesia Menggunakan Multilayer Perceptron,” e-Proceeding Eng., vol. 6, no. 2, p. 2137, 2019.

Elgendy, M.(2019). Deep Learning for Vision System. 475.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Implementasi Transfer Learning Pada Algoritma Convolutional Neural Network untuk Mengklasifikasikan Image Objek Wisata

Dimensions Badge
Article History
Submitted: 2022-06-25
Published: 2022-06-30
Abstract View: 58 times
PDF Download: 39 times
How to Cite
Mira, M., Sembiring, I., & Purnomo, H. (2022). Implementasi Transfer Learning Pada Algoritma Convolutional Neural Network untuk Mengklasifikasikan Image Objek Wisata. Building of Informatics, Technology and Science (BITS), 4(1), 209−216. https://doi.org/10.47065/bits.v4i1.1764
Issue
Section
Articles