Prediksi Tingkat Kesembuhan Pasien Covid-19 Berdasarkan Riwayat Vaksin Menggunakan Metode Naïve Bayes
Abstract
Covid-19 has shocked the world since it first appeared at the end of December 2019. At the beginning of 2022, the global community is more prepared to face the COVID-19 pandemic, especially with the mass vaccination program in countries around the world, including Indonesia. The next issue is how effective the vaccine is in dealing with the COVID-19 virus. The main parameter used is to see the recovery rate of patients affected by COVID-19 based on the history of vaccine doses that have been received by the patient. In this study using data mining techniques, namely using the Naïve Bayes algorithm. The test results show the accuracy of the Naïve Bayes algorithm is 98.14%. The prediction results show that the recovery rate of patients who have received the vaccine, either dose 1, dose 2, or dose 3 (booster) is higher than those who have not been vaccinated at all (dose 0). The results of this study are expected to provide an overview to the public and the government about the benefits of vaccination in dealing with the Covid-19 virus.
Downloads
References
A. Susilo et al., “Coronavirus Disease 2019 : Tinjauan Literatur Terkini,” J. Penyakit Dalam Indones., vol. 7, no. 1, pp. 45–67, 2020.
Satuan Tugas Penanganan Covid-19, “Situasi virus Covid-19 di Indonesia,” 2022. https://covid19.go.id/ (accessed Mar. 30, 2022).
H. Abebe, S. Shitu, and A. Mose, “Understanding of COVID-19 vaccine knowledge, attitude, acceptance, and determinates of COVID-19 vaccine acceptance among adult population in Ethiopia,” Infect. Drug Resist., vol. 14, no. June, pp. 2015–2025, 2021, doi: 10.2147/IDR.S312116.
Google News, “Coronavirus (Covid-19) Worldwide Statistics,” 2022. https://news.google.com/covid19/map?hl=en-ID&gl=ID&ceid=ID%3Aen (accessed Mar. 30, 2022).
N. Rochmawati et al., “Covid Symptom Severity Using Decision Tree,” 2020, doi: 10.1109/ICVEE50212.2020.9243246.
Y. Huang, H. Liu, and J. Pan, “Identification of data mining research frontier based on conference papers,” Int. J. Crowd Sci., vol. 5, no. 2, pp. 143–153, 2021, doi: 10.1108/ijcs-01-2021-0001.
M. A. Ledhem, “Data mining techniques for predicting the financial performance of Islamic banking in Indonesia,” J. Model. Manag., 2021, doi: 10.1108/JM2-10-2020-0286.
F. Rahman and M. I. Firdaus, “Penerapan Data Mining Metode Naïve Bayes Untuk Prediksi Hasil Belajar Siswa Sekolah Menengah Pertama (Smp),” Al Ulum Sains dan Teknol., vol. 1, no. 2, pp. 76–78, 2016.
F. E. Prabowo and A. Kodar, “Analisis Prediksi Masa Studi Mahasiswa Menggunakan Algoritma Naïve Bayes,” J. Ilmu Tek. dan Komput., vol. 3, no. 2, pp. 147–151, 2019, doi: 10.22441/jitkom.2020.v3.i2.008.
M. Guntur, J. Santony, and Y. Yuhandri, “Prediksi Harga Emas dengan Menggunakan Metode Naïve Bayes dalam Investasi untuk Meminimalisasi Resiko,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 2, no. 1, pp. 354–360, 2018, doi: 10.29207/resti.v2i1.276.
P. Meilina, “Penerapan Data Mining dengan Metode Klasifikasi Menggunakan Decision Tree dan Regresi,” J. Teknol. Univ. Muhammadiyah Jakarta, vol. 7, no. 1, pp. 11–20, 2015, [Online]. Available: jurnal.ftumj.ac.id/index.php/jurtek.
R. A. Anggraini, G. Widagdo, A. S. Budi, and M. Qomaruddin, “Penerapan Data Mining Classification untuk Data Blogger Menggunakan Metode Naïve Bayes,” J. Sist. dan Teknol. Inf., vol. 7, no. 1, pp. 47–51, 2019, doi: 10.26418/justin.v7i1.30211.
R. M. S. Tumangger, N. Hidayat, and Marji, “Komparasi Metode Data Mining Support Vector Machine dengan Naive Bayes untuk Klasifikasi Status Kualitas Air,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 10, pp. 9614–9619, 2019.
B. P. Amiruddin, E. A. Kore, D. A. Ulhaq, and A. Widhatama, “Perbandingan Performa Algoritma Klasifikasi pada Data Intensitas Penggunaan Listrik Rumah Tangga,” 2020.
M. Imron, “Penerapan Data Mining Algoritma Naives Bayes Dan PART Untuk Mengetahui Minat Baca Mahasiswa Di Perpustakaan STMIK Amikom Purwokerto,” J. Telemat., vol. 10, no. 2, pp. 121–135, 2017.
T. Rosandy, “Perbandingan Metode Naive Bayes Classifier dengan Metode Decision Tree (C4.5) untuk Menganalisa Kelancaran Pembiayaan(Study Kasus : KSPPS / BMT AL-FADHILA),” J. Teknol. Inf. Magister Darmajaya, vol. 2, no. 01, pp. 52–62, 2016.
K. S. Raju, M. R. Murty, M. V. Rao, and S. C. Satapathy, “Support Vector Machine with K-fold Cross Validation Model for Software Fault Prediction,” Int. J. Pure Appl. Math., vol. 118, no. 20, pp. 321–334, 2018, [Online]. Available: https://www.researchgate.net/publication/329414359_Support_Vector_Machine_with_K-fold_Cross_Validation_Model_for_Software_Fault_Prediction.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Prediksi Tingkat Kesembuhan Pasien Covid-19 Berdasarkan Riwayat Vaksin Menggunakan Metode Naïve Bayes
Pages: 191−199
Copyright (c) 2022 Candra Gudiato, Sri Yulianto Joko Prasetyo, Hindriyanto Dwi Purnomo

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).