Analisis Perbandingan Algoritma NGG dan GGHN pada Frekuensi Hasil Enkripsi

  • Farid Akbar Siregar Universitas Muhammadiyah Sumatera Utara, Medan, Indonesia
  • Ade Rizka Universitas Pembangunan Panca Budi, Medan, Indonesia
  • Annisa Fadillah Siregar * Mail, Indonesia
  • (*) Corresponding Author
Keywords: Cryptography; NGG; GGHN; Encryption; Decryption


Data and information in the development of digital technology have an important role. Every activity or activity that uses digital technology is related to data and information, so information security and data confidentiality are very important. To maintain information security and data confidentiality, protection with cryptographic techniques is needed. Cryptographic techniques are related to encryption, which is where the process of scrambling data is carried out and hiding data with a key system, while decryption is the process of changing the condition of the data to its original form so that it is easy to understand. There are obstacles and problems ini digital communication, so cryptographic techniques are needed that have higher level of security and can be applied in digital communications. To determine the level of security in cryptographic techniques  required frequency anlysis. Frequency analysis on the NGG and GGHN algorithms is carried out to determine the level of information security based on the results of data encryption. BAse on the testing process on the NGG and GGHN algorithms, it will be known that the frequency of characters in the text varies. The more characters used in the key will affect the level of information security. The NGG algorithm has a higher level of security than the GGHN algorithm with a precentage difference of 0.000299967%. If the frequency of occurrence of characters in the message text that has been encrypted is more frequent or higher, then the level of information security in the message is lower and the password is easier to crack.


Download data is not yet available.


A. Khalid, G. Paul, and A. Chattopadhyay, Domain specific high-level synthesis for cryptographic workloads.

S. D. Galbraith, Mathematics of Public Key Cryptography, 1st ed. United State of America: Cambridge University Press, 2012.

D. Chaudhuri, G. Fink, and K. Liu, Discrete subaortic stenosis in a patient with a history of repaired AV canal defect, vol. 28, no. 9. 2011. doi: 10.1111/j.1540-8175.2011.01507.x.

S. Banik and T. Isobe, “Cryptanalysis of the full Spritz stream cipher,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2016, vol. 9783, pp. 63–77. doi: 10.1007/978-3-662-52993-5_4.

D. Liestyowati, Public Key Cryptography, vol. 1477, no. 5. 2020. doi: 10.1088/1742-6596/1477/5/052062.

G. Paul, S. Maitra, and A. Chattopadhyay, “Quad-RC4: Merging Four RC4 States towards a 32-bit Stream Cipher.,” IACR Cryptol. ePrint Arch., vol. 2013, no. May, p. 572, 2013, [Online]. Available:

A. Kircanski and A. M. Youssef, “On the structural weakness of the GGHN stream cipher,” Cryptogr. Commun., vol. 2, no. 1, pp. 1–17, Sep. 2010, doi: 10.1007/s12095-009-0013-3.

A. Kircanski and A. M. Youssef, “On the weak state in GGHN-like ciphers,” in Proceedings - 2012 7th International Conference on Availability, Reliability and Security, ARES 2012, 2012, pp. 397–401. doi: 10.1109/ARES.2012.32.

I. Print, S. An-nissa, H. Mawengkang, and S. Efendi, “InfoTekJar : Jurnal Nasional Informatika dan Teknologi Jaringan RC4 GGHN Cryptography Algorithm for Message Security,” vol. 2, pp. 6–10, 2022.

F. Akbar, H. Mawengkang, and S. Efendi, “Comparative analysis of RC4+ algorithm, RC4 NGG algorithm and RC4 GGHN algorithm on image file security,” IOP Conf. Ser. Mater. Sci. Eng., vol. 420, no. 1, 2018, doi: 10.1088/1757-899X/420/1/012131.

S. Suhandinata, R. A. Rizal, D. O. Wijaya, P. Warren, and S. Srinjiwi, “Analisis Performa Kriptografi Hybrid Algoritma Blowfish Dan Algoritma Rsa,” JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. 6, no. 1, pp. 1–10, 2019, doi: 10.33330/jurteksi.v6i1.395.

G. Paul and S. Maitra, RC4 stream cipher and its variants. CRC Press, 2012.

S. Banik, S. Maitra, and S. Sarkar, “On the evolution of GGHN cipher,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 7107 LNCS, pp. 181–195, 2011, doi: 10.1007/978-3-642-25578-6_15.

A. Kircanski, R. Al-Zaidy, and A. M. Youssef, “A new distinguishing and key recovery attack on NGG stream cipher,” Cryptogr. Commun., vol. 1, no. 2, pp. 269–282, May 2009, doi: 10.1007/s12095-009-0012-4.

S. Banik, S. Sarkar, and R. Kacker, “Security analysis of the RC4+ stream cipher,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8250 LNCS, pp. 297–307, 2013, doi: 10.1007/978-3-319-03515-4_20.

F. Riza, N. Sridewi, A. M. Husein, and M. K. Harahap, “Analisa Frekuensi Hasil Enkripsi Pada Algoritma Kriptografi Blowfish Terhadap Keamanan Informasi,” J. Teknol. dan Ilmu Komput. Prima, vol. 1, no. 1, pp. 11–15, 2018, doi: 10.34012/jutikomp.v1i1.233.

P. Singh, D. Mishra, and K. Seth, Transformation in healthcare with emerging technologies.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Perbandingan Algoritma NGG dan GGHN pada Frekuensi Hasil Enkripsi

Dimensions Badge
Article History
Submitted: 2022-06-06
Published: 2022-06-30
Abstract View: 24 times
PDF Download: 23 times
How to Cite
Siregar, F., Rizka, A., & Siregar, A. (2022). Analisis Perbandingan Algoritma NGG dan GGHN pada Frekuensi Hasil Enkripsi. Building of Informatics, Technology and Science (BITS), 4(1), 303−311.