Penerapan Metode Multi-Objective Optimization on the Basis of Simple Ratio Analysis (MOOSRA) dalam Penentuan Lulusan Mahasiswa Terbaik


  • Abdul Karim Universitas Budi Darma, Medan, Indonesia
  • Shinta Esabella * Mail Universitas Teknologi Sumbawa, Sumbawa, Indonesia
  • Titi Andriani Universitas Teknologi Sumbawa, Sumbawa, Indonesia
  • Muhammad Hidayatullah Universitas Teknologi Sumbawa, Sumbawa, Indonesia
  • (*) Corresponding Author
Keywords: DSS; Best Students; MOOSRA

Abstract

The problems that are often faced by the campus in the management of selecting the best students which are carried out once a year in a series of graduation events are the length of the process of calculating student data which is still done manually, criteria that have not been fulfilled optimally and are still based on value calculations alone, and processing is still manual. so that errors and data errors often occur which are quite fatal, subjective selection is still a common problem in the world of education so it is necessary to select outstanding students using a system. The system used is a decision support system that has the quality and logic of a method in a selective selection process with a high level of accuracy, while the method used is the MOOSRA method which is a decision support system method that is easy to understand and systematic stages that are easy to do. The results in this study were a student named Zainal as the owner of the highest score of 0.418397, accurate, efficient and effective results in the use of a decision support system made the selection process much more reliable

Downloads

Download data is not yet available.

References

R. Apriyanti, K. Bahrun, and M. Finthariasari, “PENGARUH KEPEMIMPINAN , REWARD DAN PUNISHMENT TERHADAP KINERJA KARYAWAN ( Studi Kasus Pada PT . K3 / SIL Ketahun Begkulu Utara ),” Entrep. dan Manaj. sains, vol. 1, no. 2, pp. 189–194, 2020.

Pradnyani, Rahmawati, and Dkk, “Pengaruh Reward Dan Punishment Terhadap Motivasi,” J. Manaj. dan Bisnis, vol. 2, no. 1, pp. 21–30, 2020.

S. Hashemkhani Zolfani, M. Yazdani, and E. K. Zavadskas, “An extended stepwise weight assessment ratio analysis (SWARA) method for improving criteria prioritization process,” Soft Comput., vol. 22, no. 22, pp. 7399–7405, 2018.

T. Limbong et al., Sistem Pendukung Keputusan: Metode & Implementasi. Medan: Yayasan Kita Menulis, 2020.

M. Syafar, Y. Yuyun, and W. Wardi, “Kombinasi Metode Anp Dan Promethee Dalam Menentukan Prioritas Distribusi Logistik Bencana Alam,” Sebatik, vol. 25, no. 1, pp. 173–180, 2021.

L. Han, W. Li, and Z. Su, “An assertive reasoning method for emergency response management based on knowledge elements C4.5 decision tree,” Expert Syst. Appl., vol. 122, pp. 65–74, 2019.

M. Mariko and A. Yaqin, “Sistem Pendukung Keputusan Penentuan Calon Penerima Beasiswa Prestasi di Universitas Amikom Yogyakarta,” J. Media Inform. Budidarma, vol. 3, no. 3, p. 172, 2019.

A. Safitra and R. Syahputra, “Sistem Pendukung Keputusan Penyeleksian Mekanik Menjadi Seorang SA ( Service Advisor ) Menggunakan Metode Moosra,” vol. 1, no. 2, pp. 47–53, 2021.

A. T. Hidayat, N. K. Daulay, and Mesran, “Penerapan Metode Multi-Objective Optimization on The Basis of Ratio Analysis (MOORA) dalam Pemilihan Wiraniaga Terbaik,” J. Comput. Syst. Informatics, vol. 1, no. 4, pp. 367–372, 2020.

H. Syahputra, M. Syahrizal, S. Suginam, S. D. Nasution, and B. Purba, “SPK Pemilihan Konten Youtube Layak Tonton Untuk Anak-Anak Menerapkan Metode Additive Ratio Assessment (ARAS),” Semin. Nas. Teknol. Komput. Sains, vol. 1, no. 1, pp. 678–685, 2019.

M. Agustina, E. N. Azizah, and D. P. Koesmadi, “Pengaruh Pemberian Reward Animasi terhadap Motivasi Belajar Anak Usia Dini selama Pembelajaran Daring,” J. Obs. J. Pendidik. Anak Usia Dini, vol. 6, no. 1, pp. 353–361, 2021.

Albi Anggito and Johan Setiawan, Metodologi Penelitian Kuantitatif. Jawa Barat: CV Jejak, 2018.

H. Hasanah, “TEKNIK-TEKNIK OBSERVASI (Sebuah Alternatif Metode Pengumpulan Data Kualitatif Ilmu-ilmu Sosial),” At-Taqaddum, vol. 8, no. 1, p. 21, 2017.

D. A. Wood, “Predicting porosity, permeability and water saturation applying an optimized nearest-neighbour, machine-learning and data-mining network of well-log data,” J. Pet. Sci. Eng., vol. 184, p. 106587, Jan. 2020.

D. Febrina and I. Saputra, “Penerapan Multiobjective Optimization on the Basis of Simple Ratio Analysis (MOOSRA) Dalam Pemilihan Konten Lokal Terbaik,” J. Comput. Syst. Informatics, vol. 2, no. 3, pp. 10–19, 2021.

A. Sarkar, S. C. Panja, D. Das, and B. Sarkar, “Developing an efficient decision support system for non-traditional machine selection: an application of MOORA and MOOSRA,” Prod. Manuf. Res., vol. 3, no. 1, pp. 324–342, 2015.

F. Meilida, “Sistem Pendukung Keputusan Seleksi Atlet Pon Cabang Pencak Silat Menerapkan MOOSRA,” Bull. Comput. Sci. Res., vol. 1, no. 3, pp. 93–100, 2021.

A. S. Nadeak, “Implementasi Ahp Dan Moosra Pemilihan Kasir Terbaik (Studi Kasus: Suzuya Departement Store),” Pelita Inform. Inf. dan …, vol. 9, pp. 189–196, 2021.

Haeruddin, “Pemilihan Peserta Olimpiade Matematika Menggunakan Metode MOORA dan MOOSRA,” Build. Informatics, Technol. Sci., vol. 3, no. 4, pp. 489–494, 2022.

F. Feizi, A. A. Karbalaei-Ramezanali, and S. Farhadi, “FUCOM-MOORA and FUCOM-MOOSRA: new MCDM-based knowledge-driven procedures for mineral potential mapping in greenfields,” SN Appl. Sci., vol. 3, no. 3, pp. 1–19, 2021.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Penerapan Metode Multi-Objective Optimization on the Basis of Simple Ratio Analysis (MOOSRA) dalam Penentuan Lulusan Mahasiswa Terbaik

Dimensions Badge
Article History
Submitted: 2022-06-05
Published: 2022-06-30
Abstract View: 87 times
PDF Download: 53 times
How to Cite
Karim, A., Esabella, S., Andriani, T., & Hidayatullah, M. (2022). Penerapan Metode Multi-Objective Optimization on the Basis of Simple Ratio Analysis (MOOSRA) dalam Penentuan Lulusan Mahasiswa Terbaik. Building of Informatics, Technology and Science (BITS), 4(1), 162−168. https://doi.org/10.47065/bits.v4i1.1630
Issue
Section
Articles