Penerapan Algoritma K-Medoids Clustering Dalam Pembentukan Zona Cluster Vaksin Boster


  • Siti Lialiyah * Mail STMIK Widya Cipta Dharma, Samarinda, Indonesia
  • Reza Andrea Politeknik Pertanian Negeri Samarinda, Samarinda, Indonesia
  • (*) Corresponding Author
Keywords: Data Mining; Covid-19; K-Medoids Algorithm; Clusters; Vaccine

Abstract

The effects of the COVID-19 virus pandemic are quite bad for people's lives both in Indonesia and especially in North Sumatra. The spread of the virus is quite fast from the interaction of every community, causing the government to make policies to limit the activities of each community. In addition to policies in limiting community activities, the government also makes policies by distributing vaccines for free to every community starting from the first vaccine, the second and last vaccine is the third vaccine (booster). The purpose of the vaccine itself is to stimulate the body's antibodies to recognize the weakened virus in the vaccine. The aim of the vaccine is to slow the spread of the virus itself. The third vaccine (booster) is a complementary vaccine given by the government so that antibodies can completely inhibit a person from being affected by the COVID-19 virus. Therefore, it is necessary to accelerate the process of administering the third vaccine (booster). This can be done by forming clusters in each region. The purpose of forming clusters is to be able to identify priority areas that should be given the third vaccine (booster). Therefore we need a technique that is able to group/cluster the third vaccine administration zone (booster). One technique that can be used is the K-Medoids Algorithm. The expected results of the research using the K-Medoids Algorithm are able to form a cluster zone which will later be able to find out which areas are the priority for giving the third vaccine (booster).

Downloads

Download data is not yet available.

References

Y. F. S. Y. Damanik, S. Sumarno, I. Gunawan, D. Hartama, and I. O. Kirana, “Penerapan Data Mining Untuk Pengelompokan Penyebaran Covid-19 Di Kalimantan Timur Menggunakan Algoritma K-Means,” J. Ilmu Komput. dan Inform., vol. 1, no. 2, pp. 109–132, 2021, doi: 10.54082/jiki.13.

D. P. Sari, “Implementasi Algoritma K-Means Dalam Menentukan Tingkat Penyebaran Pandemi Covid-19 Di Sumatera Barat,” Comput. Based Inf. Syst. J., vol. 9, no. 1, pp. 50–56, 2021, doi: 10.33884/cbis.v9i1.3646.

N. Mirantika, “Penerapan Algoritma K-Means Clustering Untuk Pengelompokan Penyebaran Covid-19 di Provinsi Jawa Barat,” Nuansa Inform., vol. 15, no. 2, pp. 92–98, 2021, doi: 10.25134/nuansa.v15i2.4321.

Alvina Felicia Watratan, Arwini Puspita. B, and Dikwan Moeis, “Implementasi Algoritma Naive Bayes Untuk Memprediksi Tingkat Penyebaran Covid-19 Di Indonesia,” J. Appl. Comput. Sci. Technol., vol. 1, no. 1, pp. 7–14, 2020, doi: 10.52158/jacost.v1i1.9.

K. K. R. INDONESIA, “Vaksinasi COVID-19 Nasional,” INDONESIA, KEMENTERIAN KESEHATAN REPUBLIK, 2022. https://vaksin.kemkes.go.id/#/vaccines.

C.-19 Sumut, “Kasus Covid-19 Di SUMUT,” Pemprov Sumut, 2022. https://covid19.sumutprov.go.id/article/title/perkembangan-kasus-covid19-tanggal-12-april-2022-di-provinsi-sumatera-utara.

D. P. Utomo, P. Sirait, and R. Yunis, “Reduksi Atribut Pada Dataset Penyakit Jantung dan Klasifikasi Menggunakan Algoritma C5. 0,” Media Inform. Budidarma, vol. 4, no. 4, pp. 994–1006, 2020.

D. P. Utomo and S. Aripin, “Penerapan Algoritma C5 . 0 Untuk Mengetahui Pola Kepuasan Mahasiswa di Masa Pembelajaran Daring,” in Seminar Nasional Riset Dan Information Science (SENARIS), 2021, vol. 3, pp. 7–12.

E. Buulolo, R. Syahputra, and A. Fau, “Algoritma K-Medoids Untuk Menentukan Calon Mahasiswa Yang Layak Mendapatkan Beasiswa Bidikmisi di Universitas Budi Darma,” J. Media Inform. Budidarma, vol. 4, no. 3, p. 797, 2020, doi: 10.30865/mib.v4i3.2240.

N. Pulungan, S. Suhada, and D. Suhendro, “Penerapan Algoritma K-Medoids Untuk Mengelompokkan Penduduk 15 Tahun Keatas Menurut Lapangan Pekerjaan Utama,” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 329–334, 2019, doi: 10.30865/komik.v3i1.1609.

S. Darma and G. W. Nurcahyo, “Klasterisasi Teknik Promosi dalam Meningkatkan Mutu Kampus Menggunakan Algoritma K-Medoids,” J. Inform. Ekon. Bisnis, vol. 3, pp. 89–94, 2021, doi: 10.37034/infeb.v3i3.87.

R. A. Farissa, R. Mayasari, and Y. Umaidah, “Perbandingan Algoritma K-Means dan K-Medoids Untuk Pengelompokkan Data Obat dengan Silhouette Coefficient di Puskesmas Karangsambung,” J. Appl. Informatics Comput., vol. 5, no. 2, pp. 109–116, 2021, doi: 10.30871/jaic.v5i1.3237.

E. Buulolo and B. Purba, “Algoritma Clustering Untuk Membentuk Cluster Zona,” vol. 19, pp. 59–67.

D. Marlina, N. Lina, A. Fernando, and A. Ramadhan, “Implementasi Algoritma K-Medoids dan K-Means untuk Pengelompokkan Wilayah Sebaran Cacat pada Anak,” J. CoreIT J. Has. Penelit. Ilmu Komput. dan Teknol. Inf., vol. 4, no. 2, p. 64, 2018, doi: 10.24014/coreit.v4i2.4498.

I. Kamila, U. Khairunnisa, and M. Mustakim, “Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokan Data Transaksi Bongkar Muat di Provinsi Riau,” J. Ilm. Rekayasa dan Manaj. Sist. Inf., vol. 5, no. 1, p. 119, 2019, doi: 10.24014/rmsi.v5i1.7381.

N. L. Anggreini, “Teknik Clustering Dengan Algoritma K-Medoids Untuk Menangani Strategi Promosi Di Politeknik Tedc Bandung,” J. Teknol. Inf. dan Pendidik., vol. 12, no. 2, pp. 1–7, 2019, doi: 10.24036/tip.v12i2.215.

S. Sindi, W. R. O. Ningse, I. A. Sihombing, F. I. R.H.Zer, and D. Hartama, “Analisis Algoritma K-Medoids Clustering Dalam Pengelompokan Penyebaran Covid-19 Di Indonesia,” J. Teknol. Inf., vol. 4, no. 1, pp. 166–173, 2020, doi: 10.36294/jurti.v4i1.1296.

F. Telaumbanua, J. M. Purba, and D. P. Utomo, “Analysis of Online Learning Understanding Patterns at Budi Darma University Using the C5 . 0 Algorithm,” vol. 5, no. 2, pp. 118–122, 2021, doi: 10.30865/ijics.v5i2.3129.

D. P. Utomo and Mesran, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,” Media Inform. Budidarma, vol. 4, no. 2, pp. 437–444, 2020.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Penerapan Algoritma K-Medoids Clustering Dalam Pembentukan Zona Cluster Vaksin Boster

Dimensions Badge
Article History
Submitted: 2022-05-29
Published: 2022-06-30
Abstract View: 40 times
PDF Download: 23 times
How to Cite
Lialiyah, S., & Andrea, R. (2022). Penerapan Algoritma K-Medoids Clustering Dalam Pembentukan Zona Cluster Vaksin Boster. Building of Informatics, Technology and Science (BITS), 4(1), 124−129. https://doi.org/10.47065/bits.v4i1.1617
Issue
Section
Articles