Analisis Pengguna Media Sosial Terhadap Isu UU Cipta Kerja Menggunakan SNA dan Naive Bayes


  • Stevanus Dwi Istiavan Mau Universitas Kristen Satya Wacana, Salatiga, Indonesia
  • Irwan Sembiring * Mail Universitas Kristen Satya Wacana, Salatiga, Indonesia
  • Hindriyanto Purnomo Universitas Kristen Satya Wacana, Salatiga, Indonesia
  • (*) Corresponding Author
Keywords: SNA; NAVIE BAYES; TWITTER; OMNIBUSLAW; Create Work

Abstract

In research about analysis issue analysis, UU Cipta Kerja aims to investigate aktor which has the most influence in the discussion on the network is based on the analysis of the most popular centrality values on the issues law copyright this working. Research is in use of the method of Social Network Analysis ( SNA ). The data in minutely as many as 1686 nodes and 1403 edges in extract through the API Twitter with the help of application WinPython and Netlytic with a period 08 October 2020 - 05 July 2021. The result of this research showed that account @BEMUI_ Official is account the most popular with the Degree Centrality 944, value Betweenness Centrality 640042.0. But on a calculation Closeness Centrality aktor @BEMUI_Official having value 0.701235, therefore nodes who have a centrality highest do not necessarily have the value that both in terms of the dissemination of information.

Downloads

Download data is not yet available.

References

P. Studi et al., “MODEL KOMUNIKASI SOSIAL REMAJA MELALUI MEDIA TWITTER,” no. 52, pp. 539–549.

S. R. Utami, R. N. Safitri, and Y. A. Kuncoroyakti, “Analisis Jaringan dan Aktor # BatalkanOmnibusLaw di Media Sosial Twitter Menggunakan Social Network Analysis ( SNA ) topik popular yang berupa tagar pada Twitter adalah # BatalkanOmnibusLaw . # BatalkanOmnibusLaw yang ramai menjadi pembicaraan warganet sebagai bentuk kritik Law sebagai kebijakan reformasi regulasi , urgensi , kajian pembentukan , dan politik hukum,” vol. 4, no. 3, pp. 135–148, 2021.

A. Rochiyat et al., “Analisis Aktor Berpengaruh Dan Aktor Popular Dengan Metode Degree Centrality Dan Follower Rank Pada Tagar Twitter ‘# gejayanmemanggil ,’” vol. 6, no. 2, pp. 130–138, 2020.

C. N. Zempi, I. Politik, and U. Gadjah, “Media Sosial dalam Gerakan Antikorupsi : Analisis Jejaring Sosial tentang Penolakan ‘ Koruptor Bisa Lari ’ Keputusan di Twitter,” vol. VIII, pp. 92–103, 2019.

A. P. Rabbani, A. Alamsyah, and S. Widiyanesty, “Jurnal Mitra Manajemen ( JMM Online ),” vol. 4, no. 3, pp. 341–351, 2020.

S. S. Reviews, N. Samatan, A. Fatoni, and S. Murtiasih, “DISASTER COMMUNICATION PATTERNS AND BEHAVIORS ON SOCIAL MEDIA : A STUDY SOCIAL NETWORK # BANJIR2020 ON TWITTER,” vol. 8, no. 4, pp. 27–36, 2020.

U. Indonesia, “Hashtags and Digital Movement of Opinion Mobilization : A Social Network Analysis / SNA Study on # BubarkanKPAI vs # KamiBersamaKPAI Hashtags,” vol. VIII, no. 3, 2019.

S. E. Zaluchu, “Metode Penelitian di dalam Manuskrip Jurnal Ilmiah Keagamaan,” J. Teol. Ber. Hidup, vol. 3, no. 2, pp. 249–266, 2021.

A. Latupeirissa, E. Sediyono, and A. Iriani, “Pemanfaatan Social Network Analysis Untuk Menganalisis Kolaborasi Komunikasi Pada Balai Perikanan Budidaya Laut Ambon,” vol. 02, pp. 121–132, 2019.

N. Permatasari, R. Yosral, and C. F. Annisa, “( Twitter Analysis About Online Education During COVID-19 Pandemic In Indonesia ) ANALISIS MEDIA SOSIAL TWITTER TENTANG PENDIDIKAN DARING PADA MASA PANDEMI COVID- 19 DI INDONESIA,” pp. 359–369, 2020.

F. M. Imamah, “Volume 11 No . 2 Desember 2020 SOCIAL NETWORK ANALYSIS TERHADAP KOMUNIKASI POLITIK PEREMPUAN DI TWITTER SOCIAL NETWORK ANALYSIS ON WOMEN ’ S POLITICAL COMMUNICATION IN TWITTER,” vol. 11, no. 2, pp. 187–204, 2020.

R. Sistem, “Analisis Akun Twitter Berpengaruh terkait Covid-19 menggunakan Social,” vol. 5, no. 10, pp. 697–704, 2021.

I. M. Nadhiroh, M. N. Aidi, and B. Sartono, “Kajian Scientometrics: Analisis Jaringan Sosial pada Publikasi Internasional Indonesia Bidang Kimia,” STI Policy Manag. J., vol. 13, no. 1, pp. 68–84, 2013, doi: 10.14203/STIPM.2015.40.

S. Network, A. For, B. Management, and B. Countries, “Jurnal Aksi Reformasi Government Dalam Demokrasi Volume 8 – Nomor 2 , Desember 2020 JURNAL AGREGASI Jurnal Aksi Reformasi Government Dalam Demokrasi,” vol. 8, pp. 168–187, 2020, doi: 10.34010/agregasi.v8i2.3231.

H. Annur, “KLASIFIKASI MASYARAKAT MISKIN MENGGUNAKAN METODE,” vol. 10, pp. 160–165, 2018.

M. Abbas, K. Ali, A. Jamali, K. Ali Memon, and A. Aleem Jamali, “Multinomial Naive Bayes Classification Model for Sentiment Analysis,” IJCSNS Int. J. Comput. Sci. Netw. Secur., vol. 19, no. 3, p. 62, 2019, [Online]. Available: https://www.researchgate.net/publication/334451164.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Pengguna Media Sosial Terhadap Isu UU Cipta Kerja Menggunakan SNA dan Naive Bayes

Dimensions Badge
Article History
Submitted: 2022-05-24
Published: 2022-06-30
Abstract View: 54 times
PDF Download: 56 times
How to Cite
Mau, S., Sembiring, I., & Purnomo, H. (2022). Analisis Pengguna Media Sosial Terhadap Isu UU Cipta Kerja Menggunakan SNA dan Naive Bayes. Building of Informatics, Technology and Science (BITS), 4(1), 149−155. https://doi.org/10.47065/bits.v4i1.1610
Issue
Section
Articles