Analisis Kelayakan Penerima Bantuan Covid-19 Menggunakan Metode K–Means
Abstract
The government provides several types of assistance during the covid-19 pandemic that is distributed through the agencies of each village throughout Indonesia, one of which is Punggulan Village air joman subdistrict. The types of assistance that have been distributed to citizens are Cash Social Assistance (BST), Social Safety Net Assistance (JPS), Non-Cash Sembako Assistance, and Cash Direct Assistance (BLT). So far the assistance provided by Punggulan Village is still done manually, so it is possible to occur errors in the collection and distribution of assistance. To solve the problem, the author applies one of the data mining algorithms, the K-Means algorithm, to determine the recipient of covid-19 assistance that is done by collecting population data by the specified attributes. Then the data is weighted to facilitate the calculation of K-Means, after that build a system to implement the K-Means algorithm and perform testing. Population data used is 50 data recipients of aid 2021 as a sample using 3 attributes, namely, income, dependents, and other beneficiaries. The result of this system is prospective recipients of Covid-19 assistance with 2 feasible clusters (C1) and unfit (C2)
Downloads
References
A. I. Fahrika and J. Roy, “Dampak pandemi covid 19 terhadap perkembangan makro ekonomi di indonesia dan respon kebijakan yang ditempuh The impact of the Covid 19 pandemic on macroeconomic developments in Indonesia and the policy response taken,” vol. 16, no. 2, pp. 206–213, 2020.
W. Mega and P. Dhuhita, “CLUSTERING MENGGUNAKAN METODE K-MEANS UNTUK,” Inform. J., vol. 15, no. 2, 2015.
A. Bansal, “Improved K-mean Clustering Algorithm for Prediction Analysis using Classification Technique in Data Mining,” vol. 157, no. 6, pp. 35–40, 2017.
M. G. Sadewo, A. P. Windarto, and D. Hartama, “Penerapan Datamining Pada Populasi Daging Ayam Ras Pedaging Di Indonesia Berdasarkan Provinsi Menggunakan K-Means Clustering,” InfoTekJar (Jurnal Nas. Inform. dan Teknol. Jaringan), vol. 2, no. 1, pp. 60–67, 2017, doi: 10.30743/infotekjar.v2i1.164.
M. W, Z. A. Leleury, and A. W. Talluta, “Analisis Cluster Dengan Menggunakan Metode K-Means Untuk Pengelompokkan Kabupaten/Kota Di Provinsi Maluku Berdasarkan Indikator Indeks Pembangunan Manusia Tahun 2014,” J. Ilmu Mat. dan Terap. |, vol. 11, no. 2, pp. 119–128, 2017.
H. Sulastri and A. I. Gufroni, “Penerapan Data Mining Dalam Pengelompokan Penderita Thalassaemia,” J. Nas. Teknol. dan Sist. Inf., vol. 3, no. 2, pp. 299–305, 2017, doi: 10.25077/teknosi.v3i2.2017.299-305.
M. H. Adiya and Y. Desnelita, “Jurnal Nasional Teknologi dan Sistem Informasi Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan Pada RSUD Pekanbaru,” vol. 01, pp. 17–24, 2019.
S. Nurdiani, S. Linawati, R. A. Safitri, and E. P. Saputra, “Pengelompokan Perilaku Mahasiswa Pada Perkuliahan E-Learning dengan K-Means Clustering,” vol. 19, no. 2, 2019.
L. Listiani, Y. H. Agustin, and M. Z. Ramdhani, “Implementasi algoritma k-means cluster untuk rekomendasi pekerjaan berdasarkan pengelompokkan data penduduk,” pp. 761–769, 2017.
Suliman, “IMPLEMENTASI DATA MINING TERHADAP PRESTASI DAN SOSIAL EKONOMI DENGAN ALGORITMA K-MEANS CLUSTERING,” SIMKOM, vol. 6, no. 1, pp. 1–11, 2021.
U. D. Soer and Mustijah;, “Prediksi Penjualan Karton Dus Susu Chil Mil Dengan Penerapan Data Mining Menggunakan Algorima Metode C4.5,” vol. 10, no. 2, pp. 53–57, 2019.
H. Haviluddin, S. J. Patandianan, G. M. Putra, N. Puspitasari, and H. S. Pakpahan, “Implementasi Metode K-Means Untuk Pengelompokkan Rekomendasi Tugas Akhir,” Inform. Mulawarman J. Ilm. Ilmu Komput., vol. 16, no. 1, p. 13, 2021, doi: 10.30872/jim.v16i1.5182.
J. O. Ong, “Implementasi Algoritma K-Means Clustering Untuk Menentukan Strategi Marketing President University,” vol. 12, no. 1, 2013.
S. Kasus and D. Hwi, “K-MEANS CLUSTERING HWI PRODUCTS,” 2019.
D. Jollyta, W. Ramdhan, and M. Zarlis, Konsep Data Mining Dan Penerapan. Deepublish, 2020.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Kelayakan Penerima Bantuan Covid-19 Menggunakan Metode K–Means
Pages: 574-583
Copyright (c) 2022 Akris Nursia Nursia, William Ramdhan, Wan Mariatul Kifti

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).