Analisis Kelayakan Penerima Bantuan Covid-19 Menggunakan Metode K–Means


  • Akris Nursia Nursia * Mail STMIK Royal Kisaran, Kisaran, Indonesia
  • William Ramdhan STMIK Royal Kisaran, Kisaran, Indonesia
  • Wan Mariatul Kifti STMIK Royal Kisaran, Kisaran, Indonesia
  • (*) Corresponding Author
Keywords: Eligibility of Beneficiaries; K-Means Algorithm; Punggulan Village; Attributes

Abstract

The government provides several types of assistance during the covid-19 pandemic that is distributed through the agencies of each village throughout Indonesia, one of which is Punggulan Village air joman subdistrict. The types of assistance that have been distributed to citizens are Cash Social Assistance (BST), Social Safety Net Assistance (JPS), Non-Cash Sembako Assistance, and Cash Direct Assistance (BLT). So far the assistance provided by Punggulan Village is still done manually, so it is possible to occur errors in the collection and distribution of assistance. To solve the problem, the author applies one of the data mining algorithms, the K-Means algorithm, to determine the recipient of covid-19 assistance that is done by collecting population data by the specified attributes. Then the data is weighted to facilitate the calculation of K-Means, after that build a system to implement the K-Means algorithm and perform testing. Population data used is 50 data recipients of aid 2021 as a sample using 3 attributes, namely, income, dependents, and other beneficiaries. The result of this system is prospective recipients of Covid-19 assistance with 2 feasible clusters (C1) and unfit (C2)

Downloads

Download data is not yet available.

References

A. I. Fahrika and J. Roy, “Dampak pandemi covid 19 terhadap perkembangan makro ekonomi di indonesia dan respon kebijakan yang ditempuh The impact of the Covid 19 pandemic on macroeconomic developments in Indonesia and the policy response taken,” vol. 16, no. 2, pp. 206–213, 2020.

W. Mega and P. Dhuhita, “CLUSTERING MENGGUNAKAN METODE K-MEANS UNTUK,” Inform. J., vol. 15, no. 2, 2015.

A. Bansal, “Improved K-mean Clustering Algorithm for Prediction Analysis using Classification Technique in Data Mining,” vol. 157, no. 6, pp. 35–40, 2017.

M. G. Sadewo, A. P. Windarto, and D. Hartama, “Penerapan Datamining Pada Populasi Daging Ayam Ras Pedaging Di Indonesia Berdasarkan Provinsi Menggunakan K-Means Clustering,” InfoTekJar (Jurnal Nas. Inform. dan Teknol. Jaringan), vol. 2, no. 1, pp. 60–67, 2017, doi: 10.30743/infotekjar.v2i1.164.

M. W, Z. A. Leleury, and A. W. Talluta, “Analisis Cluster Dengan Menggunakan Metode K-Means Untuk Pengelompokkan Kabupaten/Kota Di Provinsi Maluku Berdasarkan Indikator Indeks Pembangunan Manusia Tahun 2014,” J. Ilmu Mat. dan Terap. |, vol. 11, no. 2, pp. 119–128, 2017.

H. Sulastri and A. I. Gufroni, “Penerapan Data Mining Dalam Pengelompokan Penderita Thalassaemia,” J. Nas. Teknol. dan Sist. Inf., vol. 3, no. 2, pp. 299–305, 2017, doi: 10.25077/teknosi.v3i2.2017.299-305.

M. H. Adiya and Y. Desnelita, “Jurnal Nasional Teknologi dan Sistem Informasi Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan Pada RSUD Pekanbaru,” vol. 01, pp. 17–24, 2019.

S. Nurdiani, S. Linawati, R. A. Safitri, and E. P. Saputra, “Pengelompokan Perilaku Mahasiswa Pada Perkuliahan E-Learning dengan K-Means Clustering,” vol. 19, no. 2, 2019.

L. Listiani, Y. H. Agustin, and M. Z. Ramdhani, “Implementasi algoritma k-means cluster untuk rekomendasi pekerjaan berdasarkan pengelompokkan data penduduk,” pp. 761–769, 2017.

Suliman, “IMPLEMENTASI DATA MINING TERHADAP PRESTASI DAN SOSIAL EKONOMI DENGAN ALGORITMA K-MEANS CLUSTERING,” SIMKOM, vol. 6, no. 1, pp. 1–11, 2021.

U. D. Soer and Mustijah;, “Prediksi Penjualan Karton Dus Susu Chil Mil Dengan Penerapan Data Mining Menggunakan Algorima Metode C4.5,” vol. 10, no. 2, pp. 53–57, 2019.

H. Haviluddin, S. J. Patandianan, G. M. Putra, N. Puspitasari, and H. S. Pakpahan, “Implementasi Metode K-Means Untuk Pengelompokkan Rekomendasi Tugas Akhir,” Inform. Mulawarman J. Ilm. Ilmu Komput., vol. 16, no. 1, p. 13, 2021, doi: 10.30872/jim.v16i1.5182.

J. O. Ong, “Implementasi Algoritma K-Means Clustering Untuk Menentukan Strategi Marketing President University,” vol. 12, no. 1, 2013.

S. Kasus and D. Hwi, “K-MEANS CLUSTERING HWI PRODUCTS,” 2019.

D. Jollyta, W. Ramdhan, and M. Zarlis, Konsep Data Mining Dan Penerapan. Deepublish, 2020.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Kelayakan Penerima Bantuan Covid-19 Menggunakan Metode K–Means

Dimensions Badge
Article History
Submitted: 2022-03-14
Published: 2022-03-31
Abstract View: 489 times
PDF Download: 426 times
How to Cite
Nursia, A., Ramdhan, W., & Kifti, W. M. (2022). Analisis Kelayakan Penerima Bantuan Covid-19 Menggunakan Metode K–Means. Building of Informatics, Technology and Science (BITS), 3(4), 574-583. https://doi.org/10.47065/bits.v3i4.1399
Issue
Section
Articles