Movie Recommendation System Using Knowledge-Based Filtering and K-Means Clustering

  • Kurnia Drajat Wibowo Telkom University, Bandung, Indonesia
  • Z K A Baizal * Mail Telkom University, Bandung, Indonesia
  • (*) Corresponding Author
Keywords: Apriori; K-Means; Association Rule; Recommender System; Cold Start Problem


The movie recommender system has an important role in providing movie recommendations for users, but new users have difficulty choosing movies that are given by the recommender system because of the cold start problem. This study aims to overcome the cold start problem using a knowledge-based recommender system, i.e association rule mining using an apriori algorithm. The apriori algorithm aims to extract correlations between product itemsets, but the problem in the apriori algorithm is the large number of association rules that make the complex computation. To overcome this problem, we combine the apriori algorithm and k-means to produce more accurate recommendations, because the items are grouped before the recommendation process using the k-means algorithm. In this study, we use a dataset of movies and ratings from the Kaggle website. This study uses a minimum value of 0.5 confidence, and a minimum value of 4 lifts. To produce the best itemset in the form of antecedents and consequents of the Beauty and the Beast item with The Passion of Joan of Arc which has a value of 0.107981 support, 0.779661 confidence, 4.151695 lift


Download data is not yet available.


H. El Bouhissi, M. Adel, A. Ketam, and A. B. M. Salem, “Towards an efficient knowledge-based recommendation system,” CEUR Workshop Proc., vol. 2853, pp. 38–49, 2021.

S. B. Ud Duja et al., “A proposed method to solve cold start problem using fuzzy user-based clustering,” Int. J. Adv. Comput. Sci. Appl., no. 2, pp. 529–536, 2020, doi: 10.14569/ijacsa.2020.0110267.

Z. K. A. Baizal, D. H. Widyantoro, and N. U. Maulidevi, “Design of knowledge for conversational recommender system based on product functional requirements,” Proc. 2016 Int. Conf. Data Softw. Eng. ICoDSE 2016, 2017, doi: 10.1109/ICODSE.2016.7936151.

Z. K. A. Baizal, D. H. Widyantoro, and N. Ulfa, “Data & Knowledge Engineering Computational model for generating interactions in conversational recommender system based on product functional requirements,” Data Knowl. Eng., no. March, p. 101813, 2020, doi: 10.1016/j.datak.2020.101813.

S. Vijayarani and S. Sharmila, “Comparative analysis of association rule mining algorithms,” Proc. Int. Conf. Inven. Comput. Technol. ICICT 2016, vol. 2016, 2016, doi: 10.1109/INVENTIVE.2016.7830203.

H. N. Ravuvar, H. Goda, R. Sumathi, and P. Chinnasamy, “Smart health predicting systemusing K-means algorithm,” 2020 Int. Conf. Comput. Commun. Informatics, ICCCI 2020, pp. 22–25, 2020, doi: 10.1109/ICCCI48352.2020.9104206.

M. R. Yudhanegara, S. W. Indratno, and R. K. N. Sari, “Clustering for Item Delivery Using Rule-K-Means,” J. Indones. Math. Soc., vol. 26, no. 2, pp. 185–191, 2020, doi: 10.22342/jims.26.2.871.185-191.

C. Langensiepen, A. Cripps, and R. Cant, “Using PCA and K-Means to predict likeable songs from playlist information,” Proc. - 2018 UKSim-AMSS 20th Int. Conf. Model. Simulation, UKSim 2018, pp. 26–31, 2018, doi: 10.1109/UKSim.2018.00017.

A. Dahbi, M. Mouhir, Y. Balouki, and T. Gadi, “Classification of association rules based on K-means algorithm,” Colloq. Inf. Sci. Technol. Cist, vol. 0, pp. 300–305, 2016, doi: 10.1109/CIST.2016.7805061.

S. D. Patil, R. R. Deshmukh, and D. K. Kirange, “Adaptive Apriori Algorithm for frequent itemset mining,” Proc. 5th Int. Conf. Syst. Model. Adv. Res. Trends, SMART 2016, pp. 7–13, 2017,doi:10.1109/SYSMART.2016.7894480.

W. Xueyuan and Y. Bo, “Design and implementation of an apriori-based recommendation system for college libraries,” Proc. - 2018 Int. Conf. Eng. Simul. Intell. Control. ESAIC 2018, vol. 9, pp. 372–375, 2018, doi: 10.1109/ESAIC.2018.00094.

F. Fauzan, D. Nurjanah, and R. Rismala, “Apriori Association Rule for Course Recommender system,” Indones. J. Comput., vol. 5, no. 2, pp. 1–6, 2020, doi: 10.21108/indojc.2020.5.2.434.

N. P. Dharshinni, F. Azmi, I. Fawwaz, A. M. Husein, and S. D. Siregar, “Analysis of Accuracy K-Means and Apriori Algorithms for Patient Data Clusters,” J. Phys. Conf. Ser., vol. 1230, no. 1, pp. 0–8, 2019, doi: 10.1088/1742- 6596/1230/1/012020.

W. Ahmad AlZoubi, “Cluster Based Association Rule Mining for Courses Recommendation System,” Int. J. Comput. Sci. Inf. Technol., vol. 11, no. 6, pp. 13–19, 2019, doi: 10.5121/ijcsit.2019.11602.

H. A. Pradana, . Laurentinus, F. P. Juniawan, and D. Y. Sylfania, “Product Recommendation Systems using Apriori in the Selection of Shoe based on Android,” no. Conrist 2019, pp. 311–318, 2020, doi:10.5220/0009909603110318.

S. Gupta and S. Arora, “Handling Cold Start Problem in Recommender Systems By Clustering Demographic Attribute,” Int. J. Eng. Appl. Sci. Technol., vol. 1, no. August, pp. 59–63, 2016.

R. B. R, “Recommendation System for Movie Cast and Crew using Datamining Algorithm,” Int. J. Eng. Adv. Technol., vol. 9, no. 4, pp. 1495–1497, 2020, doi: 10.35940/ijeat.d7522.049420.

J. Hong, R. Tamakloe, and D. Park, “Discovering Insightful Rules among Truck Crash Characteristics using Apriori Algorithm,” J. Adv. Transp., vol. 2020, 2020, doi: 10.1155/2020/4323816.

A. B. A. Alwahhab, “Proposed Recommender System for Solving Cold Start Issue Using k-means Clustering and Reinforcement Learning Agent,” Proc. - 2020 2nd Annu. Int. Conf. Inf. Sci. AiCIS 2020, pp. 13–21, 2020, doi: 10.1109/AiCIS51645.2020.00013.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Movie Recommendation System Using Knowledge-Based Filtering and K-Means Clustering

Dimensions Badge
Article History
Submitted: 2022-01-26
Published: 2022-03-31
Abstract View: 234 times
PDF Download: 181 times
How to Cite
Wibowo, K., & Baizal, Z. K. A. (2022). Movie Recommendation System Using Knowledge-Based Filtering and K-Means Clustering. Building of Informatics, Technology and Science (BITS), 3(4), 460-465.