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Abstract−Aviation safety is highly influenced by weather conditions, particularly during take-off and landing, necessitating an 

accurate feasibility assessment. Traditional manual methods rely on subjective judgment, making them prone to inconsistencies 
and errors. This study proposes a decision support system utilizing Mamdani fuzzy logic to process real-time meteorological data 

from the Radin Inten II station and assess take-off and landing feasibility. The system evaluates key weather parameters, including 

wind speed, wind direction, visibility, precipitation, and cloud height. Testing 31 data samples from BMKG, the system achieved 

an accuracy of 96.77%, with 30 out of 31 outputs matching standard aviation criteria. These results indicate that the system 
significantly improves decision-making reliability. The Mamdani fuzzy logic approach proves effective in interpreting complex 

weather data and generating consistent, data-driven recommendations to support safe aircraft operations. 
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1. INTRODUCTION 

Airplanes are currently the main means of transportation for people and goods. Compared to land or sea transportation, 

aircraft allow movement between locations in a much shorter time [1]. Air traffic activity in Indonesia has continued 

to grow, with the number of aircraft movements rising from 1,527,743 in 2015 to 1,735,788 in 2019 [2]. This rapid 

increase in flight operations elevates the risk of accidents, highlighting the critical need to prioritize safety in aviation 

operations. Safety in air transportation is a crucial aspect, especially during takeoff and landing, as it involves the 

transition of the aircraft between land and air. Boeing data (1959-2017) shows that 63% of fatal accidents occur in 

these two phases, with 14% during takeoff and 49% during landing [3]. This indicates that the takeoff and landing 

phases require special attention in flight safety design, including navigation systems, pilot training, and other 

supporting technologies [4]. 

The aircraft take-off and landing process is heavily influenced by various weather parameters affecting flight 

safety and success [5]. The International Civil Aviation Organization (ICAO) states that weather forecasts for aviation 

safety must include parameters such as wind, visibility, weather, clouds, and temperature [6]. These parameters are in 

line with those mandated by Indonesia’s Civil Aviation Safety Regulation (CASR), issued under Ministry of 

Transportation Regulation No. 95 of 2018, which requires the provision of standardized meteorological information 

containing surface wind, visibility, weather phenomena, and cloud conditions for aviation safety purposes [7]. In 

response to these weather factors, pilots and Air Traffic Control (ATC) officers work together to ensure a safe takeoff, 

supported by the latest weather information from the local Meteorology, Climatology and Geophysics Agency 

(BMKG) station. Based on the weather data received, the pilot assesses whether the conditions meet the safety limits 

set for the aircraft to be flown [8]. However, the manual or rule-based method of assessing aircraft takeoff feasibility 

has several limitations, especially when faced with dynamic and complex weather conditions [9]. In addition, manual 

decision-making relies heavily on individual experience and intuition, which can lead to inconsistencies and potential 

human error. 

A decision support system capable of processing large volumes of data in real time, identifying complex 

patterns, and generating accurate recommendations is essential, particularly in environments characterized by 

uncertainty and imprecise information. In such cases, conventional binary logic may be insufficient, as it limits 

reasoning to two absolute values: true (1) or false (0). Fuzzy logic offers a more flexible approach by allowing truth 

values to exist on a continuous scale between 0 and 1. This enables systems to handle vague, uncertain, or subjective 

data more effectively. For instance, rather than simply classifying a condition as “safe” or “unsafe,” a fuzzy logic 

system can assess it as “less safe” or “fairly safe,” assigning a specific degree of membership to each category. This 

approach better reflects human reasoning in complex decision-making scenarios [10]. To implement fuzzy logic in 

such systems, several methods have been developed. One widely used method is the Mamdani approach, introduced 

by Ebrahim Mamdani in 1975. This method applies a set of linguistic rules to translate input data into output decisions. 

It is particularly suitable for decision support systems, as it mimics the way humans reason under uncertainty [11]. 

Previous research by Dagal et al. [12], Siahaan [13] , and Pratiwi [14] have demonstrated the effective use of 

fuzzy logic to assess runway suitability for landing or takeoff by analyzing weather parameters such as visibility, wind 

direction, and wind speed. While these studies have provided important insights, the scope of weather variables 

considered remains relatively narrow. Building on these previous studies, the present research introduces additional 

parameters specifically, rainfall and cloud height to enhance the decision-making process. These two additional 

parameters are crucial. Cloud height is used to determine the 'ceiling,' which refers to the lowest altitude at which 

clouds cover more than half of the sky. This is especially important for flight operations, particularly during approach 
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and landing. Meanwhile, heavy rainfall can significantly affect visibility, aircraft performance, and operational safety 

[15]. For instance, intense rain can reduce visibility, interfere with the electronic systems of light aircraft, and create 

water accumulation on runways, which may impair braking effectiveness [16]. By integrating these variables, this 

study aims to offer a more comprehensive and adaptive analysis of real-time weather dynamics. This extended 

approach represents a novel contribution, as it allows for a more detailed and realistic assessment of runway conditions 

without disregarding the foundational work of earlier research.  
Radin Inten II Airport in South Lampung serves as the main gateway for air transportation in Lampung 

Province. The surrounding area frequently experiences extreme weather conditions such as heavy rainfall and strong 

winds, which can significantly impact flight safety, particularly during takeoff and landing operations. However, 

current decision-making in such situations still heavily relies on manual judgment. This study fills the gap by designing 

a decision support system based on Mamdani fuzzy logic, which analyzes real-time weather data from the Radin Inten 

II meteorological station to provide recommendations on the feasibility of takeoff and landing. Furthermore, the 

system is evaluated to assess its performance and reliability in enhancing flight safety. 

2. RESEARCH METHODOLOGY 

2.1 Research Stages 

 

Figure 1. Flowchart of Research Methods 

Figure 1 presents the flowchart of this research. This decision support system operates by analyzing five 

weather parameters: wind direction, wind speed, visibility, rainfall, and cloud height. The system's workflow consists 

of two main stages, namely data acquisition and data processing using Mamdani fuzzy logic. In the first stage, weather 

data is collected and stored in Excel format (.xlsx) after being retrieved from the database of the Class I Meteorological 

Station Radin Inten II Lampung in March 2023. In the second stage, the data is processed using fuzzy logic, which 

includes fuzzification, inference, and defuzzification. The output of the system is a decision indicating whether an 

aircraft is suitable for takeoff or landing.  

2.2 Fuzzification  

In assessing the feasibility of aircraft take-off, several input variables are used, such as wind speed, wind direction, 

visibility, rainfall, and cloud height. Each fuzzy variable in the input data is divided into several sets. All fuzzy sets 

and each fuzzy variable in the input data are represented using membership functions, that is in the form of a decreasing 

linear curve, trapezoid, and an increasing linear curve. The end result is a decision regarding aircraft take-off, where 

the linguistic variable values for each parameter category are described in Table 1. 

Table 1. Variables and Categories of Each Parameter 

No Parameter Criteria 

1 
Wind Speed 

(knots) 

0 – 5 Slow 

3 – 13 Medium 

10 – 30 Strong 

2 

Wind 

Direction 

(degrees) 

0 – 70 Danger 1 

60 – 90 Moderately Safe 1 

80 – 180 Safe 

170 – 200 Moderately Safe 2 

190 – 360 Danger 2 

3 
Visibility 

(km) 

0 – 5 Near 

4,5 – 8 Medium 

>7,5 Far 

4 
Rainfall 

(millimeters) 

0 – 5 Mild 

3 – 10 Medium 

>8 Heavy 

5 0 – 2000 Low 
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No Parameter Criteria 

Cloud 

Height (m) 

1800 – 

7000 

Medium 

6000 – 

13000 

High 

6 Decision (%) 

0 – 40 Feasible 

30 – 70 Caution 

60 – 100 No Feasible 

2.2 Inference  

After the fuzzification process, the data is processed using a predetermined model, namely Mamdani to generate basic 

rules in the fuzzy inference model. At this stage, the system processes the relationship between the input value (crisp 

input) and the expected output value (crisp output) with rules. In this study, the decision-making model for determining 

aircraft takeoff feasibility is constructed using the Mamdani fuzzy logic system, which incorporates five 

meteorological input variables: wind speed, wind direction, visibility, rainfall, and cloud height. Each variable is 

discretized into linguistic categories, among which certain values are defined as critical: high wind speed, danger 1 

and danger 2 wind directions, low visibility, heavy rainfall, and low cloud height, as decribed in Table 2. 

Table 2. Definition of Input Parameters and Their Critical Categories 

Parameter 
Total Number of 

Categories (n) 

Number of Critical 

Categories (c) 

Wind Speed 3 1 (High) 

Wind Direction 5 2 (Danger1, Danger 2) 

Visibility 3 1 (Low) 

Rainfall 3 1 (Heavy) 

Cloud Height 3 1 (Low) 

The total number of input combinations is calculated by multiplying the number of linguistic terms (categories) 

for each parameter: 

𝑁𝑡𝑜𝑡𝑎𝑙 = 𝑛1 × 𝑛2 × 𝑛3 × 𝑛4 × 𝑛5 = 3 × 5 × 3 × 3 × 3 = 405  

Let 𝑐 be the number of critical categories for each parameter, and  𝐶 be the total number of critical categories 

present in a specific combination. To determine the output classification for each combination, the number of critical 

categories present is counted. The output decision function 𝐷 is defined as : 

𝐷 = {

𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒,                       𝑖𝑓 𝐶 = 0 
𝐶𝑎𝑢𝑡𝑖𝑜𝑛, 𝑖𝑓 𝐶 = 1 𝑜𝑟 𝐶 = 2

𝑁𝑜𝑡 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒,               𝑖𝑓 𝐶 ≥ 3
  

A complete enumeration over the 405 combinations was performed, classifying each according to its value of  

𝐶 . The resulting distribution was: 

Dfeasible = 48, for combination with 𝐶 = 0 

Dcaution = 269, for combination with 𝐶 = 1 𝑜𝑟 𝐶 = 2 

Dnot  feasible = 88, for combination with 𝐶 ≥ 3 

Table 3 presents examples of fuzzy rules derived from sample data used in this study. These examples represent 

a subset of the full 405 possible parameter combinations. Specifically, the table showcases 31 selected rules that were 

formulated based on observed data values during the research. 

Table 3. Fuzzy Rules Example  

No Wind Speed 

(knot) 

Wind Direction 

(Degree) 

Visibility 

(km) 

Rainfall 

(mm) 

Cloud 

Height (m) 
Output 

1 Medium  Danger 2 Low Heavy  Low  Not Feasible 

2 Slow Danger 2 Far  Heavy  Heavy  Caution 

3 Medium  Danger 2 Far  Medium  Low  Caution 

4 Medium  Danger 1 Far  Medium  Low  Caution 

5 Medium  Danger 1 Far  Medium  Low  Caution 

6 Medium  Danger 2 Far  Heavy  Low  Not Feasible 

7 High  Danger 2 Far  Heavy  Low  Not Feasible 

8 Medium  Danger 2 Far  Heavy  Heavy  Caution 

9 Medium  Danger 1 Far  Heavy  Low  Not Feasible 

10 Medium  Safe Far  Medium  Low  Feasible 

11 Slow Danger 2 Far  Medium  Heavy  Caution 
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No Wind Speed 

(knot) 

Wind Direction 

(Degree) 

Visibility 

(km) 

Rainfall 

(mm) 

Cloud 

Height (m) 
Output 

12 High  Danger 1 Far  Medium  Heavy  Caution 

13 Medium  Danger 2 Far  Medium  Low  Caution 

14 Medium  Danger 2 Medium Medium  Low  Caution 

15 Medium  Danger 2 Far  Medium  Low  Caution 

16 Medium  Danger 2 Far  Medium  Heavy  Caution 

17 Medium  Danger 2 Far  Medium  Low  Caution 

18 Medium  Danger 1 Far  Medium  Low  Caution 

19 Slow Danger 1 Medium Medium  Low  Caution 

20 Medium  Danger 1 Far  Medium  Heavy  Caution 

21 Medium  Danger 1 Far  Medium  Low  Caution 

22 High  Danger 1 Far  Medium  Low  Caution 

23 Medium  Moderate Safe 1 Far  Medium  Heavy Feasible 

24 Medium  Safe  Far  Heavy  Low  Caution 

25 Medium  Safe  Far  Medium  Heavy  Feasible 

26 Medium  Moderate Safe 2 Far  Medium  Heavy  Feasible 

27 Medium  Safe  Far  Medium  Light  Feasible 

28 Medium  Danger 2 Far  Medium  Low  Caution 

29 Medium  Danger 2 Medium Heavy  Heavy  Caution 

30 Slow Danger 1 Far  Medium  Low  Caution 

31 High  Danger 1 Medium Medium  Heavy  Caution 

In this fuzzy logic system, five parameters can be included in the critical category, such as wind speed (strong), 

wind direction (danger 1 or danger 2), visibility (Slow), rainfall (heavy), and cloud height (low). The rules used to 

determine the output are as follows: if there are at least three parameters in the critical category, then the output is 

categorized as “Not Feasible.” If there are one or two parameters in the critical category, then the output is categorized 

as “Caution.” Meanwhile, if there are no parameters in the critical category, then the output is categorized as 

“Feasible.” 

2.3 Defuzzification 

Finally, the results of the inference process using the Mamdani method are in the form of fuzzy numbers, which are 

subsequently converted into crisp values through the defuzzification process. In fuzzy systems, after fuzzy rules are 

applied and inference is carried out, the results are still in the form of membership degrees in several fuzzy sets. Since 

this result is still in an uncertain form or cannot be directly used by deterministic systems, a defuzzification process is 

needed to convert it into a single value that can be interpreted more clearly. In this study, the defuzzification method 

used is the Centroid or Center of Gravity (CoG), which calculates the center of the area under the aggregated 

membership function curve to produce a representative crisp output. 

3. RESULT AND DISCUSSION 

3.1 Design of Fuzzy System 

In this study, the data was analyzed using fuzzy logic by taking 31 random samples from the data set representing 

each criterion in the aircraft flight decision variable. In this study, MATLAB was utilized to implement the fuzzy 

inference system due to its robust and versatile environment for fuzzy logic development. The Fuzzy Logic Toolbox 

in MATLAB offers integrated functionalities for constructing Mamdani-type systems, including the specification of 

input and output variables, the design of membership functions, and the formulation of fuzzy rules. One of MATLAB’s 

notable strengths lies in its user-friendly graphical interface, which enables researchers to intuitively define fuzzy sets 

and rules, perform simulations of the inference process, and visualize defuzzification outcomes in real time [17]. 

Furthermore, MATLAB supports a variety of membership function shapes that are essential for accurately modeling 

uncertainty and smooth transitions between linguistic terms. The first step in building this application is to enter the 

initial data into the Fuzzy toolbox, which includes five input variables and one output variable. Figure 2 shows the 

design of the fuzzy system designed. 

 

Figure 2. Fuzzy System Design 
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3.2 Membership Function 

To define each variable, a fuzzy set is created as described in Table 1. Then, to represent these variables, two types of 

membership function curves are used. A membership function is a curve that describes the mapping of input data 

points into their membership values, which are often referred to as membership degrees, with a range between 0 and 

1 [18]. One method to determine the membership value is with a function approach. There are several types of function 

curves that can be used in this process, including linear curves, triangles, trapezoids, shoulders, bells, and others [19]. 

In this research, two types of curves are used to represent each variable which can be seen in Figure 3. In the 

wind speed variable, there are three fuzzy sets defined: slow, medium, and fast. Slow and fast fuzzy sets are 

represented with trapezoidal curves, while medium fuzzy sets use triangular curves. In the wind direction variable, 

five fuzzy sets are defined, namely danger 1, moderately safe 1, safe, moderately safe 2, and danger 2. All fuzzy sets 

in this variable are represented with trapezoidal curves. Wind direction and wind speed are closely related and affect 

the aircraft landing process because they can produce crosswind [20]. 

In the visibility variable, the three fuzzy sets defined are near, medium, and far. The near and far fuzzy sets are 

represented with a trapezoidal curve, while the medium fuzzy set uses a triangular curve. In the rainfall variable, the 

three fuzzy sets defined include light, medium, and heavy. Light and heavy fuzzy sets are represented with trapezoidal 

curves, while medium fuzzy sets use triangular curves. In the cloud height variable, there are three fuzzy sets, which 

are low, medium, and high. The low and high fuzzy sets are represented with a trapezoidal curve, while the medium 

fuzzy set uses a triangular curve. Finally, in the decision variable, the three fuzzy sets defined are feasible, cautious, 

and infeasible. The feasible and infeasible fuzzy sets are represented with a trapezoidal curve, while the cautious fuzzy 

set uses a triangular curve. 

 

Figure 3. Membership Function Curves for All Variables 
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3.3 Fuzzy System Testing 

A fuzzy inference system (FIS) can be defined as a nonlinear mapping that produces outputs based on fuzzy reasoning 

and a set of fuzzy IF–THEN rules. The rapid development of fuzzy set theory has led to the emergence of various 

types of FIS, with the most commonly used systems being Mamdani, Sugeno, and Tsukamoto [21]. The Mamdani 

method is chosen because it mimics human decision-making processes. The process begins with fuzzification, where 

numerical inputs—such as weather parameter data—are converted into linguistic variables, namely weather criteria, 

using fuzzy membership functions. These values are then processed in the fuzzy inference stage, which uses a set of 

IF–THEN rules stored in a rule base. These rules connect input variables to outputs based on linguistic logic [22]. For 

example: “If wind speed is strong, wind direction is dangerous, visibility is low, rainfall is heavy, and cloud height is 

low, then the output is not suitable for takeoff/landing.” The inference mechanism then combines this information to 

determine a fuzzy output. Afterward, defuzzification is carried out to convert the fuzzy output into a numerical value 

that can be used in a control system, as illustrated in Figure 2.  

In this study, the accuracy level of the developed Mamdani fuzzy system was measured. Accuracy is defined 

as the degree to which the measurement results approach the actual value [23]. In this context, accuracy refers to how 

closely the output value of the Mamdani method matches the predetermined standard value. This standard value is 

determined based on the membership function of the output variable in the fuzzy logic system used to make aircraft 

takeoff decisions [24]. 

Next, the fuzzy system that was built was tested. Testing was carried out on 31 samples of BMKG data in the 

Radin Inten II Lampung Airport area. The calculation results are expected to produce fuzzy logic values that are in 

accordance with the standards/rules that have been made. After determining the membership function value for each 

variable, the next step is to test the program in MATLAB. At the end of the calculation, a Z value will be obtained, 

which is the result of calculations using Mamdani fuzzy logic. Figure 4 below shows the test results based on the data 

that has been entered into the fuzzy variables. 

 

Figure 4. Fuzzy Testing Results.  The decision output is 81.2% which indicates that the aircraft is  

not suitable for take-off/landing. 

Next, the accuracy level of the fuzzy system formed is measured. Accuracy is defined as, the extent to which 

the measurement results are close to the true value. In this research, accuracy refers to the suitability of the output 

value of the Mamdani method with a predetermined standard value. The standard value is determined based on the 

membership function of the output variable in the fuzzy logic system used to determine aircraft take-off decisions. 
Next, the accuracy level of the fuzzy system formed is measured. Accuracy is defined as, the extent to which the 

measurement results are close to the true value. In this research, accuracy refers to the suitability of the output value 
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of the Mamdani method with a predetermined standard value. The standard value is determined based on the 

membership function of the output variable in the fuzzy logic system used to determine aircraft take-off decisions. 

Table 4. Measurement Data and Comparison of Data Results. 

No  Date 

Wind 

Speed 

(knots) 

Wind 

Direction 

(degrees) 

Visibility 

(km) 

Rainfall 

(mm) 

Cloud 

Height 

(m) 

Rule 

(Standard 

Value) 

System Output 

1 01-03-2023 11.64 310 1 9 1500 Not Feasible Not Feasible 

2 02-03-2023 3.88 350 30 23.2 6000 Caution Caution 

3 03-03-2023 11.64 330 30 3.6 1500 Caution Caution 

4 04-03-2023 5.82 10 20 3.5 1500 Caution Caution 

5 05-03-2023 7.76 10 40 8 1500 Caution Caution 

6 06-03-2023 7.76 320 10 11.5 1500 Not Feasible Not Feasible 

7 07-03-2023 17.46 270 20 9.5 1500 Not Feasible Not Feasible 

8 08-03-2023 5.82 290 10 45.5 2100 Caution Caution 

9 09-03-2023 5.82 30 50 66 1600 Not Feasible Not Feasible 

10 10-03-2023 7.76 150 30 0.2 1500 Feasible  Feasible  

11 11-03-2023 3.88 260 20 29.3 6000 Caution Caution 

12 12-03-2023 17.46 10 30 0 6000 Caution Caution 

13 13-03-2023 7.76 310 30 1 1500 Caution Caution 

14 14-03-2023 9.7 330 6 0 1500 Caution Caution 

15 15-03-2023 7.76 360 40 6 1600 Caution Caution 

16 16-03-2023 9.7 320 40 0 7000 Caution Caution 

17 17-03-2023 9.7 20 40 0.6 1500 Caution Caution 

18 18-03-2023 11.64 40 8 0 1500 Caution Caution 

19 19-03-2023 3.88 30 8 0 1600 Caution Caution 

20 20-03-2023 5.82 20 40 4.5 6000 Caution Caution 

21 21-03-2023 9.7 60 20 6 1500 Caution Caution 

22 22-03-2023 17.46 40 30 0 1600 Caution Caution 

23 23-03-2023 7.76 80 20 0 8200 Feasible  Feasible  

24 24-03-2023 9.7 150 56 56 1500 Caution Caution 

25 25-03-2023 7.76 120 40 0.5 7000 Feasible  Feasible  

26 26-03-2023 7.76 190 58 0 6500 Feasible  Feasible  

27 27-03-2023 11.64 130 58 0 8100 Feasible  Feasible  

28 28-03-2023 9.7 360 30 0 1500 Caution Caution 

29 29-03-2023 7.76 350 7 11.1 6000 Caution Feasible  

30 30-03-2023 3.88 10 10 7.9 1500 Caution Caution 

31 31-03-2023 17.46 70 7 1.5 6000 Caution Caution 

Determination of the accuracy level is carried out with the following criteria: a) if the fuzzy calculation result 

is by the predetermined standard value, it is declared accurate and, b) if the calculation result does not match, it is 

declared inaccurate. After the data is processed using the MATLAB toolbox, the output value of the Mamdani method 

can be analyzed and displayed in Table 3. The accuracy level of the Mamdani method in this study can be calculated 

as a percentage of the number of accurate results against the total samples tested. Of the total 31 samples analyzed, 

30 data were declared accurate. Thus, the accuracy level of the fuzzy system formed is 96.77%.  
These results indicate that the Mamdani method has a high level of accuracy in assessing aircraft takeoff and 

landing feasibility. However, discrepancies between the output and the actual values may be caused by various factors, 

such as uncertainties in the input data and imperfections in the fuzzification and defuzzification processes [25]. These 

two factors can be optimized to improve accuracy by using a broader data sample. Moreover, further research is 

needed to compare the Mamdani method with other fuzzy approaches, such as the Sugeno method, in order to provide 

a more comprehensive insight into the application of fuzzy logic in aircraft takeoff and landing decision-making 

systems. In addition to technical factors, membership function parameters and fuzzy rules also influence the final 

output of this decision support system [26]. Therefore, future work may focus on optimizing membership functions 

and fuzzy rules, comparing Mamdani with other fuzzy methods like Sugeno, and developing real-time decision 

support systems. 

4. CONCLUSION 

A fuzzy logic system built using the Mamdani method in MATLAB has been successfully used to analyze aircraft 

flight decisions based on weather variables. Five input variables including wind speed, wind direction, visibility, 

rainfall, and cloud height were successfully converted into decision variables using trapezoidal and triangular 

membership functions. Testing 31 samples of BMKG data at Radin Inten II Airport Lampung showed that the fuzzy 
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system developed was able to produce decisions that were in accordance with the standard rules that had been set. 

From the comparison results, 30 out of 31 samples showed accurate results, so this system has an accuracy rate of 

96.77%. This shows that the fuzzy logic approach with the Mamdani method can be an effective tool in helping 

decision-making related to aircraft flight feasibility based on weather conditions. 
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