Calligraphy Style Personalization in Serious Games Using User-Based Collaborative Filtering with Cosine Similarity


  • Alfina Nurrahma N * Mail Universitas Islam Negeri Maulana Malik Ibrahim, Malang, Indonesia
  • Fresy Nugroho Universitas Islam Negeri Maulana Malik Ibrahim, Malang, Indonesia https://orcid.org/0000-0001-9448-316X
  • Yunifa Miftahul Arif Universitas Islam Negeri Maulana Malik Ibrahim, Malang, Indonesia
  • (*) Corresponding Author
Keywords: Calligraphy; Game Adaptation; Game Base Learning; GUESS-18; Knowledge-Based Filtering

Abstract

This study aims to develop the Try Calligraphy serious game equipped with a personalized recommendation system to assist players in selecting the most suitable Arabic calligraphy style (khat) based on their performance. The primary objective of this research is to optimize learning personalization by implementing a User-Based Collaborative Filtering approach that predicts the most appropriate handwriting styles for new players based on similarity to prior users. Performance data consisting of final scores generated from decoration, neatness, and completion time are recorded and compared to construct player similarity profiles. The system calculates predicted scores for untested calligraphy styles using cosine similarity and subsequently recommends the top three styles with the highest estimated performance potential. Two experimental scenarios were conducted to assess predictive performance. The results show Mean Absolute Error (MAE) values of 16.08 and 13.92, indicating a moderate level of accuracy. These findings suggest that while the system is capable of providing relevant and targeted recommendations, additional training data and improved similarity parameter design can further enhance predictive precision. Usability evaluation using the GUESS-18 instrument involved ten respondents and produced average scores above 3.7 across all constructs, reflecting positive user perceptions in terms of usability, aesthetics, enjoyment, and personal engagement. Overall, the system demonstrates that the integration of User-Based Collaborative Filtering in a serious game environment can enhance personalized learning, increase user involvement, and support the digital preservation and education of Islamic calligraphy art.

Downloads

Download data is not yet available.

References

Achmad, G., & Jamaluddin, R. (2022). Cahaya Pena Khath Al-Qur’an. In Https://Medium.Com/. Kalimedia. https://medium.com/@arifwicaksanaa/pengertian-use-case-a7e576e1b6bf

Ajaegbu, C. (2021). An optimized item-based collaborative filtering algorithm. Journal of Ambient Intelligence and Humanized Computing, 12(12), 10629–10636. https://doi.org/10.1007/s12652-020-02876-1

Arif, Y. M., Harini, S., Nugroho, S. M. S., & Hariadi, M. (2021). An Automatic Scenario Control in Serious Game to Visualize Tourism Destinations Recommendation. IEEE Access, 9, 89941–89957. https://doi.org/10.1109/ACCESS.2021.3091425

Arif, Y. M., Nurhayati, H., Nugroho, S. M. S., & Hariadi, M. (2022). Destinations ratings based multi-criteria recommender system for Indonesian halal tourism game. International Journal of Intelligent Engineering and Systems, 15(1), 282–294.

Baniani, M. (2022). The association between colors, color preferences, and emotions among Japanese students: From elementary school to university. Color Research and Application. https://doi.org/10.1002/col.22774

Bontchev, B., Antonova, A., & Dankov, Y. (2020). Educational Video Game Design Using Personalized Learning Scenarios. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12254 LNCS, 829–845. https://doi.org/10.1007/978-3-030-58817-5_59

Bontchev, B. P., Terzieva, V., & Paunova-Hubenova, E. (2020). Personalization of serious games for learning. Interactive Technology and Smart Education, 18(1), 50–68. https://doi.org/10.1108/ITSE-05-2020-0069

Chen, C., Mo, F., Fan, X., Bai, C., & Yamana, H. (2023). MOBARec-GCNFP: Champion Recommendation for Multi-Player Online Battle Arena Games Using Graph Convolution Network with Fewer Parameters. 2023 IEEE 8th International Conference on Big Data Analytics, ICBDA 2023, 147–153. https://doi.org/10.1109/ICBDA57405.2023.10104995

Dallmann, A., Kohlmann, J., Zoller, D., & Hotho, A. (2021). Sequential Item Recommendation in the MOBA Game Dota 2. IEEE International Conference on Data Mining Workshops, ICDMW, 2021-Decem, 10–17. https://doi.org/10.1109/ICDMW53433.2021.00009

Games - Worldwide: Statista Market Forecast. (2025). Statista. https://www.statista.com/outlook/amo/media/games/worldwide

Halim, E., Gustavo, R., Kurniawan, Y., & Sukmaningsih, D. W. (2022). Producing Successful Design Website of Video Based Learning in Hybrid Learning of Higher Education. 2022 International Conference on Information Technology Systems and Innovation, ICITSI 2022 - Proceedings, 245–251. https://doi.org/10.1109/ICITSI56531.2022.9971069

Hartatik, H., Nurhayati, S. D., & Widayani, W. (2021). Sistem Rekomendasi Wisata Kuliner di Yogyakarta dengan Metode Item-Based Collaborative Filtering. Journal Automation Computer Information System, 1(2), 55–63. https://doi.org/10.47134/jacis.v1i2.8

Hong, S. J., Lee, S. K., & Yang, S. Il. (2020). Champion Recommendation System of League of Legends. International Conference on ICT Convergence, 2020-Octob, 1252–1254. https://doi.org/10.1109/ICTC49870.2020.9289546

Keebler Assoc, J. R., Shelstad, W. J., Google, D. C. S., Chaparro, B. S., & Phan Google, M. H. (2020). Validation of the GUESS-18: A Short Version of the Game User Experience Satisfaction Scale (GUESS). Journal of Usability Studies, 16(1), 49–62.

Khusna, A. N., Delasano, K. P., & Saputra, D. C. E. (2021). Penerapan User-Based Collaborative Filtering Algorithm. MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, 20(2), 293–304. https://doi.org/10.30812/matrik.v20i2.1124

Lee, H., Hwang, D., Kim, H., Lee, B., & Choo, J. (2022). DraftRec: Personalized Draft Recommendation for Winning in Multi-Player Online Battle Arena Games. WWW 2022 - Proceedings of the ACM Web Conference 2022, 3428–3439. https://doi.org/10.1145/3485447.3512278

Lee, S. K., Hong, S. J., & Yang, S. Il. (2020). Predicting Game Outcome in Multiplayer Online Battle Arena Games. International Conference on ICT Convergence, 2020-Octob, 1261–1263. https://doi.org/10.1109/ICTC49870.2020.9289254

Mittmann, G., Zehetner, V., Krammer, I., & Schrank, B. (2024). Translation, adaptation and validation of the German version of the Game User Experience Satisfaction Scale (GUESS-GA-18) for adolescents. Behaviour and Information Technology, 43(7), 1401–1415. https://doi.org/10.1080/0144929X.2023.2212807

Oktavika, R. (2023). Sistem Rekomendasi Wisata Dengan Menggunakan Algoritma Collaborative Filtering. Teknologipintar.org, 3(1), 1–15.

Permana, K. E. (2024). Comparison of User Based and Item Based Collaborative Filtering in Restaurant Recommendation System. Mathematical Modelling of Engineering Problems, 11(7), 1922–1928. https://doi.org/10.18280/mmep.110723

Pradana, R. P., Hariadi, M., Rachmadi, R. F., & Arif, Y. M. (2022). A Multi-Criteria Recommender System For NFT Based IAP In RPG Game. 2022 International Seminar on Intelligent Technology and Its Applications: Advanced Innovations of Electrical Systems for Humanity, ISITIA 2022 - Proceeding, 214–219. https://doi.org/10.1109/ISITIA56226.2022.9855272

Shen, Y., Zhou, J., Lin, W., & Feng, Z. (2022). A Deep Learning Supported Sequential Recommendation Mechanism for Ban-Pick in MOBA Games. 2022 2nd IEEE International Conference on Software Engineering and Artificial Intelligence, SEAI 2022, 259–265. https://doi.org/10.1109/SEAI55746.2022.9832346

Viljanen, M., Vahlo, J., Koponen, A., & Pahikkala, T. (2020). Content Based Player and Game Interaction Model for Game Recommendation in the Cold Start setting. https://doi.org/10.48550/arxiv.2009.08947

Yazir, M. S., Tosida, E. T., & Karlitasari, L. (2022). Endless Run Based Medicinal Plant Educational Game Development. International Journal of Global Operations Research, 3(2), 64–73. https://doi.org/10.47194/ijgor.v3i2.138

Yu, L., Westland, S., Chen, Y., & Li, Z. (2021). Colour associations and consumer product-colour purchase decisions. Color Research and Application, 46(5), 1119–1127. https://doi.org/10.1002/col.22659

Yunita, Y. (2022). The Role Of Caligraphic Arts In Civilization Islamic Culture. Ri’ayah: Jurnal Sosial dan Keagamaan. https://doi.org/10.32332/riayah.v7i2.5841

Zang, L., & Luo, W. (2022). A User-based Collaborative Filtering System for Deck Recommendation in Game Clash Royale. 2022 IEEE 14th International Conference on Computer Research and Development, ICCRD 2022, 126–130. https://doi.org/10.1109/ICCRD54409.2022.9730614

Zayadi, A. (2023). Buku Pedoman Musabaqah al-Qur’an & al-Hadits Tahun 2023. In Sustainability (Switzerland) (Vol. 11, Nomor 1, hal. 1–298). Jakarta: Direktorat Penerangan Agama Islam.

Zhang, L., Xu, C., Gao, Y., Han, Y., Du, X., & Tian, Z. (2020). Improved Dota2 Lineup Recommendation Model Based on a Bidirectional LSTM. In Tsinghua Science and Technology (Vol. 25, Nomor 6). TUP. https://doi.org/10.26599/TST.2019.9010065


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Calligraphy Style Personalization in Serious Games Using User-Based Collaborative Filtering with Cosine Similarity

Dimensions Badge
Article History
Published: 2025-12-06
Abstract View: 54 times
PDF Download: 0 times
Section
Articles

Most read articles by the same author(s)