Deteksi Serangan DDoS (Distributed Denial of Service) Menggunakan Wavelet Decomposition dan Optimasi Hyperparameter Berbasis Optuna
Abstract
This study aims to design and develop a Distributed Denial of Service (DDoS) attack detection system based on Wavelet Decomposition capable of identifying network traffic anomalies in real-time. The main problem addressed is the high false positive rate in conventional detection methods, which often fail to distinguish between legitimate traffic bursts and actual attacks. Two primary data sources were used: the CICIDS2017 dataset and self-generated data representing controlled DDoS attack patterns. The proposed method applies Discrete Wavelet Transform (DWT) to decompose network traffic signals into amplitude and energy components. Detection is then performed using the Median Absolute Deviation (MAD) approach, optimized with three parameter search methods: Grid Search, Random Search, and Optuna. Experimental results indicate that the energy-based method with Optuna optimization achieves the best performance, with an accuracy of 98.6% on the CICIDS2017 dataset and 99.4% on the self-generated data, and error rates of 1.4% and 0.6%, respectively. This research contributes to enhancing the accuracy of DDoS detection systems with low computational overhead, making it suitable for large-scale network environments.
Downloads
References
Chen, W.-Y., Pao, T.-L. & Kao, Y. (2025). Malware Traffic And Ransomware Anomaly Detection Based On Wavelet Time-Frequency Analysis And Deep Learning. Advances In Artificial Intelligence And Machine Learning; Research, 5(2), 3866–3882. https://doi.org/10.54364/AAIML.2025.52219
Elsayed, M. S., Le-Khac, N.-A., Dev, S. & Jurcut, A. D. (2020). Ddosnet: A Deep-Learning Model For Detecting Network Attacks. http://Arxiv.org/Abs/2006.13981
Faiz, M. N., Somantri, O. & Muhammad, A. W. (2022). Rekayasa Fitur Berbasis Machine Learning Untuk Mendeteksi Serangan Ddos. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 11(3), 176-182. https://doi.org/10.22146/jnteti.v11i3.3423
Harto, M. K. & Basuki, A. (2021). Deteksi Serangan Ddos Pada Jaringan Berbasis Sdn Dengan Klasifikasi Random Forest, 5(4), 1329-1333. http://J-Ptiik.Ub.Ac.Id
Hidayaturrohman, Q. A. & Hanada, E. (2025). A Comparative Analysis Of Hyper-Parameter Optimization Methods For Predicting Heart Failure Outcomes. Applied Sciences (Switzerland), 15(6), 1-17. https://doi.org/10.3390/App15063393
Maulana Ilham & Alamsyah. (2023). Optimalisasi Deteksi Serangan Ddos Menggunakan Algoritma Random Forest, Svm, Knn Dan Mlp Pada Jaringan Komputer. Indonesian Journal Of Mathematics And Natural Sciences, 46(2), 83-92. http://dx.doi.org/10.15294/ijmns.v46i2.48231
Munawarah, S. & Arip Winanto, E. (2024). Deteksi Serangan Ddos Syn Flood Pada Jaringan Internet Of Things (Iot) Menggunakan Metode Deep Neural Network (Dnn). Jurnal Informatika Dan Rekayasa Komputer (Jakakom), 4(1), 982-990. https://doi.org/10.33998/Jakakom.V4i1
Natarajan, S., Thangamuthu, M., Gnanasekaran, S. & Rakkiyannan, J. (2023). Digital Twin-Driven Tool Condition Monitoring For The Milling Process. Sensors, 23(12), 1-16. https://doi.org/10.3390/S23125431
Purba, R., Lestari, W. S. & Ulina, M. (2022). Deteksi Serangan Ddos Mengunakan Deep Q-Network. Jurnal Teknik Informatika Dan Sistem Informasi, 9(1), 684–658. https://doi.org/10.35957/jatisi.v9i1.1473
Purohit, R., Kumar, S., Sayyad, S. & Kotecha, K. (2025). Time-Frequency Analysis And Autoencoder Approach For Network Traffic Anomaly Detection. MethodsX, 14, 1-11. https://doi.org/10.1016/J.Mex.2025.103228
Sachenko, A., Woloszyn, J. & Rimashevskyi, S. (2024, Mei 25). Enhancing Network Security Through Wavelet Analysis. Proceedings Of The 8th International Conference On Computational Linguistics And Intelligent Systems. Volume Iii: Intelligent Systems Workshop. https://doi.org/10.31110/Colins/2024-3/027
Saeed, A. A. & Jameel, N. G. M. (2021). Intelligent Feature Selection Using Particle Swarm Optimization Algorithm With A Decision Tree For Ddos Attack Detection. International Journal Of Advances In Intelligent Informatics, 7(1), 37–48. https://doi.org/10.26555/Ijain.V7i1.553
Said, A., Gotoh, Y. & Matsuo, T. (2023). Assessment Of Replay Attacks Against Power System Stabilizer. Proceedings of the 10th IIAE International Conference on Intelligent Systems and Image Processing 2023. 4–10. https://doi.org/10.12792/Icisip2023.004
Said, A., Gotoh, Y. & Matsuo, T. (2024). Assessment Of Cyber Attacks Against Power System Stabilizer And Their Detection Using Phasor Measurement Units. Journal Of The Institute Of Industrial Applications Engineers, 12(3), 48–57. https://doi.org/10.12792/Jiiae.12.48
Shekhar, S., Bansode, A. & Salim, A. (2022). A Comparative Study Of Hyper-Parameter Optimization Tools. http://Arxiv.org/Abs/2201.06433
Tantriawan, H. & Suryadi, M. (2021). Deteksi Distributed Denial Of Service (Ddos) Menggunakan Logika Fuzzy Sugeno. Malcom: Indonesian Journal Of Machine Learning And Computer Science, 1(2), 144–154. https://doi.org/10.57152/Malcom.V1i2.95
Wawrowski, Ł., Białas, A., Kajzer, A., Kozłowski, A., Kurianowicz, R., Sikora, M., Szymańska-Kwiecień, A., Uchroński, M., Białczak, M., Olejnik, M. & Michalak, M. (2023). Anomaly Detection Module For Network Traffic Monitoring In Public Institutions. Sensors, 23(6), 1-18. https://doi.org/10.3390/S23062974
Yaqin, A. A., Barata, M. A. & Mahmudah, N. (2025). Implementation Of The Random Forest Algorithm With Optuna Optimization In Lung Cancer Classification. Sistemasi: Jurnal Sistem Informasi, 14(2), 561–569. https://doi.org/10.32520/stmsi.v14i2.4877
Yu, B., Zhang, Y., Xie, W., Zuo, W., Zhao, Y. & Wei, Y. (2023). A Network Traffic Anomaly Detection Method Based On Gaussian Mixture Model. Electronics (Switzerland), 12(6), 1-9. https://doi.org/10.3390/Electronics12061397
Yuliswar, T., Elfitri, I. & Purbo, O. W. (2025). Optimization Of Intrusion Detection System With Machine Learning For Detecting Distributed Attacks On Server Optimalisasi Sistem Deteksi Intrusi Menggunakan Machine Learning Untuk Deteksi Serangan Terdistribusi Pada Server. Jurnal Inovtek Polbeng - Seri Informatika, 10(1), 367-376. https://doi.org/10.35314/vem9da98
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Deteksi Serangan DDoS (Distributed Denial of Service) Menggunakan Wavelet Decomposition dan Optimasi Hyperparameter Berbasis Optuna
Pages: 932-939
Copyright (c) 2025 Andi Khalil Ghibran, Mustikasari Mustikasari, Darmatasia Darmatasia, Antamil Antamil

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).













