Sistem Prediksi Kualitas Udara Menggunakan Algoritma Long Short-Term Memory (LSTM)
Abstract
Conventional and static air quality monitoring in Yogyakarta City which only presents historical (past) data reports hinders proactive mitigation efforts against air pollution. This research aims to develop an air quality prediction system using the Long Short-Term Memory (LSTM) algorithm, a deep learning method superior for time-series data analysis. The system utilizes historical data from the Yogyakarta City Environmental Agency (DLH) from 2022 to 2024, covering pollutant parameters such as PM10, PM2.5, SO₂, CO, O₃, and NO₂. The primary prediction focus is the AQI (Air Quality Index) value, calculated based on the concentration of these pollutant parameters. The research method includes data preprocessing, such as handling missing data with interpolation, designing a two-layer LSTM model architecture, model training, and performance evaluation using Mean Absolute Error (MAE) and Mean Absolute Deviation (MAD) metrics. The results show that the developed LSTM model successfully provides predictions with good performance, where the combined average MAE value (4.85) is significantly lower than the average MAD of the actual data (10.19), indicating that the model's prediction error is smaller than the natural variability of the data. The output of this research is a prototype application with a graphical user interface (GUI) capable of displaying air quality predictions for the next day, identifying critical pollutant components, and presenting air quality condition classifications informatively.
Downloads
References
Akbar, J., Ali Setyo Yudono, M., & Lucia Kharisma, I. (2024). Peramalan Harga Bitcoin Cash-Usd (Bch-Usd) Pada Time Frame Harian Menggunakan LSTM. Jurnal Mnemonic, 7(2), 184–191. https://doi.org/10.36040/mnemonic.v7i2.10121
Alfian, H., Wahyuni, S., Revalino, A., Mirano, M. F., Rahmayana, E., & Mukhtar, H. (2021). Teknik Machine Learning Untuk Analisa Klasifikasi Kualitas Udara: A Review. Journal of Software Engineering and Information Systems, 4(2), 108–118. https://doi.org/10.37859/seis.v4i2.7617
Asnawi, M. F., Fitriyanto, N., & Pamoengkas, M. A. (2024). Analisis Big Data Untuk Pemantauan Kualitas Udara: Pendekatan, Implementasi, dan Tantangan dalam Studi Lingkungan. Journal of Engineering and Informatic, 3(1). https://doi.org/https://doi.org/10.56854/jei.v3i1.258
Geneva. (2024, Juni 25). Health consequences of air pollution on populations. World Health Organization (WHO). https://www.who.int/news/item/25-06-2024-what-are-health-consequences-of-air-pollution-on-populations
Lestari, I. G. A. N., & Mahendra, I. N. D. A. (2023). Prediksi Kualitas Udara dengan Menggunakan Metode Long Short-Term Memory dan Artificial Neural Network. Jurnal Sistem dan Informatika (JSI), 17(2), 121–129. https://doi.org/10.30864/jsi.v17i2.565
Jabat, D. E. B., Sipayung, L. Y., & Dakhi, K. R. syahputra. (2024). Penerapan Algoritma Recurrent Neural Networks (RNN) Untuk Klasifikasi Ulos Batak Toba. Seminar Nasional Inovasi Sains Teknologi Informasi Komputer, 1(2), 3025–8715. https://ejournal.ust.ac.id/index.php/SNISTIK/article/view/3697
Marlina. (2025, Oktober 28). Air quality remains moderate in Dhaka. alreinamedia. https://alreinamedia.com/air-quality-remains-moderate-in-dhaka/
Ningsih, P. T. S., Gusvarizon, M., & Hermawan, R. (2022). Analisis Sistem Pendeteksi Penipuan Transaksi Kartu Kredit dengan Algoritma Machine Learning. Jurnal Teknologi Informatika dan Komputer, 8(2), 386–401. https://doi.org/10.37012/jtik.v8i2.1306
Nugroho, K. S., Akbar, I., Suksmawati, A. N., & Istiadi. (2023). Deteksi Depresi dan Kecemasan Pengguna Twitter Menggunakan Bidirectional LSTM. https://doi.org/https://doi.org/10.48550/arXiv.2301.04521
Nurwanto, I., Tirtana, G. A., & Irkhami, A. L. (2025, Januari 2). DLH Kota Jogja Sebut Aktivitas Kendaraan Wisatawan saat Libur Nataru Berpotensi Tingkatkan Pencemaran Udara, tetapi Masih Aman. Radar Jogja. https://radarjogja.jawapos.com/jogja/655483681/dlh-kota-jogja-sebut-aktivitas-kendaraan-wisatawan-saat-libur-nataru-berpotensi-tingkatkan-pencemaran-udara-tetapi-masih-aman
Ramadhan, A. Z. H., Rahayudi, B., & Ratnawati, D. E. (2024). Prediksi Polusi Udara Di Dki Jakarta Dengan Menggunakan Metode Long-short Term Memory (LSTM). Jurnal Pengembangan Teknlogi Informasi dan Ilmu Komputer (J-PTIIK), 1(1), 2548–2964. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/14122
Rayhan Rizal Mahendra, Fetty Tri Anggraeny, & Henni Endah Wahanani. (2024). Implementasi Item-Based Collaborative Filtering Untuk Rekomendasi Film. Repeater : Publikasi Teknik Informatika dan Jaringan, 2(3), 213–221. https://doi.org/10.62951/repeater.v2i3.140
Riftianto, A. E., & Amirullah, A. (2024). Implementasi Visual Studio pada Sistem Monitoring Daya dan Proteksi Rele Arus Lebih Menggunakan Automatic Transfer Switch/Automatic Main Failure (ATS/AMF) Disuplai oleh Kombinasi Grid dan Photovoltaic (PV). Rekayasa, 17(1), 96–107. https://doi.org/10.21107/rekayasa.v17i1.22151
Rondonuwu, N. T., Setiabudhi, D. O., & Gerungan, C. A. (2025). Pengaturan Penggunaan Kecerdasan Buatan Dalam Tugas Profesional Hakim di Indonesia. Lex Privatum, 15(2). https://ejournal.unsrat.ac.id/index.php/lexprivatum/article/view/60756
Nova, S., Khotimah, N., & Wahyuningrum, M. Y. A. (2024). Pemanfaatan Chatbot Menggunakan Natural Language Processing Untuk Pembelajaran Dasar-Dasar Gui Tkinter Pada Bahasa Pemrograman Python. Jurnal Ilmiah Teknik, 3(1), 58–65. https://doi.org/10.56127/juit.v3i1.1162
Syahrul, M., Syafwan, H., & Apridonal, Y. (2024). Prediksi Persediaan Oli Sepeda Motor Di Bengkel Amin Dengan Metode Simple Moving Average. Fusion : Journal of Research in Engineering, 1(2). https://ejurnal.faaslibsmedia.com/index.php/fusion/article/view/11
Yudiskara, I. M. N., Dwidasmara, I. B. G., & Widiartha, I. M. (2023). Prediksi Polusi Udara Kota Jakarta Menggunakan Recurrent Neural Network-gated Recurrent Units. Jurnal Pengabdian Informatika, 1(3). https://ejournal1.unud.ac.id/index.php/jupita/article/view/369
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Sistem Prediksi Kualitas Udara Menggunakan Algoritma Long Short-Term Memory (LSTM)
Pages: 831-840
Copyright (c) 2025 Muhammad Zaki Wicaksono, Ledy Elsera Astrianty

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).













