Sistem Prediksi Kualitas Udara Menggunakan Algoritma Long Short-Term Memory (LSTM)


  • Muhammad Zaki Wicaksono * Mail Universitas Teknologi Yogyakarta, Yogyakarta, Indonesia
  • Ledy Elsera Astrianty Universitas Teknologi Yogyakarta, Yogyakarta, Indonesia
  • (*) Corresponding Author
Keywords: Air Quality Prediction; Long Short-Term Memory (LSTM); Deep Learning; AQI; Yogyakarta City

Abstract

Conventional and static air quality monitoring in Yogyakarta City which only presents historical (past) data reports  hinders proactive mitigation efforts against air pollution. This research aims to develop an air quality prediction system using the Long Short-Term Memory (LSTM) algorithm, a deep learning method superior for time-series data analysis. The system utilizes historical data from the Yogyakarta City Environmental Agency (DLH) from 2022 to 2024, covering pollutant parameters such as PM10, PM2.5, SO₂, CO, O₃, and NO₂. The primary prediction focus is the AQI (Air Quality Index) value, calculated based on the concentration of these pollutant parameters.  The research method includes data preprocessing, such as handling missing data with interpolation, designing a two-layer LSTM model architecture, model training, and performance evaluation using Mean Absolute Error (MAE) and Mean Absolute Deviation (MAD) metrics. The results show that the developed LSTM model successfully provides predictions with good performance, where the combined average MAE value (4.85) is significantly lower than the average MAD of the actual data (10.19), indicating that the model's prediction error is smaller than the natural variability of the data. The output of this research is a prototype application with a graphical user interface (GUI) capable of displaying air quality predictions for the next day, identifying critical pollutant components, and presenting air quality condition classifications informatively.

Downloads

Download data is not yet available.

References

Akbar, J., Ali Setyo Yudono, M., & Lucia Kharisma, I. (2024). Peramalan Harga Bitcoin Cash-Usd (Bch-Usd) Pada Time Frame Harian Menggunakan LSTM. Jurnal Mnemonic, 7(2), 184–191. https://doi.org/10.36040/mnemonic.v7i2.10121

Alfian, H., Wahyuni, S., Revalino, A., Mirano, M. F., Rahmayana, E., & Mukhtar, H. (2021). Teknik Machine Learning Untuk Analisa Klasifikasi Kualitas Udara: A Review. Journal of Software Engineering and Information Systems, 4(2), 108–118. https://doi.org/10.37859/seis.v4i2.7617

Asnawi, M. F., Fitriyanto, N., & Pamoengkas, M. A. (2024). Analisis Big Data Untuk Pemantauan Kualitas Udara: Pendekatan, Implementasi, dan Tantangan dalam Studi Lingkungan. Journal of Engineering and Informatic, 3(1). https://doi.org/https://doi.org/10.56854/jei.v3i1.258

Geneva. (2024, Juni 25). Health consequences of air pollution on populations. World Health Organization (WHO). https://www.who.int/news/item/25-06-2024-what-are-health-consequences-of-air-pollution-on-populations

Lestari, I. G. A. N., & Mahendra, I. N. D. A. (2023). Prediksi Kualitas Udara dengan Menggunakan Metode Long Short-Term Memory dan Artificial Neural Network. Jurnal Sistem dan Informatika (JSI), 17(2), 121–129. https://doi.org/10.30864/jsi.v17i2.565

Jabat, D. E. B., Sipayung, L. Y., & Dakhi, K. R. syahputra. (2024). Penerapan Algoritma Recurrent Neural Networks (RNN) Untuk Klasifikasi Ulos Batak Toba. Seminar Nasional Inovasi Sains Teknologi Informasi Komputer, 1(2), 3025–8715. https://ejournal.ust.ac.id/index.php/SNISTIK/article/view/3697

Marlina. (2025, Oktober 28). Air quality remains moderate in Dhaka. alreinamedia. https://alreinamedia.com/air-quality-remains-moderate-in-dhaka/

Ningsih, P. T. S., Gusvarizon, M., & Hermawan, R. (2022). Analisis Sistem Pendeteksi Penipuan Transaksi Kartu Kredit dengan Algoritma Machine Learning. Jurnal Teknologi Informatika dan Komputer, 8(2), 386–401. https://doi.org/10.37012/jtik.v8i2.1306

Nugroho, K. S., Akbar, I., Suksmawati, A. N., & Istiadi. (2023). Deteksi Depresi dan Kecemasan Pengguna Twitter Menggunakan Bidirectional LSTM. https://doi.org/https://doi.org/10.48550/arXiv.2301.04521

Nurwanto, I., Tirtana, G. A., & Irkhami, A. L. (2025, Januari 2). DLH Kota Jogja Sebut Aktivitas Kendaraan Wisatawan saat Libur Nataru Berpotensi Tingkatkan Pencemaran Udara, tetapi Masih Aman. Radar Jogja. https://radarjogja.jawapos.com/jogja/655483681/dlh-kota-jogja-sebut-aktivitas-kendaraan-wisatawan-saat-libur-nataru-berpotensi-tingkatkan-pencemaran-udara-tetapi-masih-aman

Ramadhan, A. Z. H., Rahayudi, B., & Ratnawati, D. E. (2024). Prediksi Polusi Udara Di Dki Jakarta Dengan Menggunakan Metode Long-short Term Memory (LSTM). Jurnal Pengembangan Teknlogi Informasi dan Ilmu Komputer (J-PTIIK), 1(1), 2548–2964. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/14122

Rayhan Rizal Mahendra, Fetty Tri Anggraeny, & Henni Endah Wahanani. (2024). Implementasi Item-Based Collaborative Filtering Untuk Rekomendasi Film. Repeater : Publikasi Teknik Informatika dan Jaringan, 2(3), 213–221. https://doi.org/10.62951/repeater.v2i3.140

Riftianto, A. E., & Amirullah, A. (2024). Implementasi Visual Studio pada Sistem Monitoring Daya dan Proteksi Rele Arus Lebih Menggunakan Automatic Transfer Switch/Automatic Main Failure (ATS/AMF) Disuplai oleh Kombinasi Grid dan Photovoltaic (PV). Rekayasa, 17(1), 96–107. https://doi.org/10.21107/rekayasa.v17i1.22151

Rondonuwu, N. T., Setiabudhi, D. O., & Gerungan, C. A. (2025). Pengaturan Penggunaan Kecerdasan Buatan Dalam Tugas Profesional Hakim di Indonesia. Lex Privatum, 15(2). https://ejournal.unsrat.ac.id/index.php/lexprivatum/article/view/60756

Nova, S., Khotimah, N., & Wahyuningrum, M. Y. A. (2024). Pemanfaatan Chatbot Menggunakan Natural Language Processing Untuk Pembelajaran Dasar-Dasar Gui Tkinter Pada Bahasa Pemrograman Python. Jurnal Ilmiah Teknik, 3(1), 58–65. https://doi.org/10.56127/juit.v3i1.1162

Syahrul, M., Syafwan, H., & Apridonal, Y. (2024). Prediksi Persediaan Oli Sepeda Motor Di Bengkel Amin Dengan Metode Simple Moving Average. Fusion : Journal of Research in Engineering, 1(2). https://ejurnal.faaslibsmedia.com/index.php/fusion/article/view/11

Yudiskara, I. M. N., Dwidasmara, I. B. G., & Widiartha, I. M. (2023). Prediksi Polusi Udara Kota Jakarta Menggunakan Recurrent Neural Network-gated Recurrent Units. Jurnal Pengabdian Informatika, 1(3). https://ejournal1.unud.ac.id/index.php/jupita/article/view/369


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Sistem Prediksi Kualitas Udara Menggunakan Algoritma Long Short-Term Memory (LSTM)

Dimensions Badge
Article History
Published: 2025-12-05
Abstract View: 255 times
PDF Download: 0 times
Section
Articles