Comparative Study of Mobilenet and Resnet for Watermelon Leaf Disease Classification Using Deep Learning
Abstract
Watermelon leaf diseases, caused by various factors such as fungi, viruses, and bacteria, can have a significant impact on agricultural yields. To increase the amount and quality of watermelon produced, early diagnosis of this disease is essential. This study aims to compare the performance of two Convolutional Neural Networks (CNN) architectures included in Deep Learning, namely MobileNet and ResNet, in classifying watermelon leaf diseases using a dataset taken from Kaggle. This dataset consists of 1000 watermelon leaf images with three conditions, namely Downy Mildew (380 images), Healthy (205 images), and Mosaic Virus (415 images). ). 95% accuracy, 96% precision, 94% recall, and 95% f1-score are the results of the MobileNet model. In contrast, the ResNet model performs better, with 97% accuracy, 96% precision, 97% recall, and 97% f1-score. The study's findings show that ResNet outperforms MobileNet in the classification of watermelon leaf illnesses, despite both models' excellent and effective performance for automatic plant disease detection applications.
Downloads
References
Al-funjan, A. W., Al Abboodi, H. M., Hamza, N. A., Abedi, W. M. S., & Abdullah, A. H. (2024). A Lightweight Deep Learning-Based Ocular Disease Prediction Model Using Squeeze-and-Excitation Network Architecture with MobileNet Feature Extraction. International Journal of Intelligent Engineering and Systems, 17(4), 243–262. https://doi.org/10.22266/IJIES2024.0831.19
Alim Murtopo, A., Aditdya, M., Septiana Ananda, P., & Gunawan, G. (2024). Penerapan Computer Vision Untuk Mendeteksi Kelengkapan Atribut Siswa Menggunakan Metode Cnn. PROSISKO: Jurnal Pengembangan Riset Dan Observasi Sistem Komputer, 11(2), 247–258. https://doi.org/10.30656/prosisko.v11i2.8752
Arjun, P. A., Suryanarayan, S., Viswamanav, R. S., Abhishek, S., & Anjali, T. (2024). Unveiling Underwater Structures: MobileNet vs. EfficientNet in Sonar Image Detection. Procedia Computer Science, 233, 518–527. https://doi.org/10.1016/j.procs.2024.03.241
Batool, A., Kim, J., & Byun, Y.-C. (2025). A Compact Deep Learning Approach Integrating Depthwise Convolutions and Spatial Attention for Plant Disease Classi cation Integrating Depthwise Convolutions and Spatial Attention for Plant Disease Classification. Plant Methods, 21(48), 1–20. https://doi.org/https://doi.org/10.1186/s13007-025-01325-4
Bouacida, I., Farou, B., Djakhdjakha, L., Seridi, H., & Kurulay, M. (2024). Innovative deep learning approach for cross-crop plant disease detection: A generalized method for identifying unhealthy leaves. Information Processing in Agriculture, October 2023. https://doi.org/10.1016/j.inpa.2024.03.002
Brito, B., & Hick, P. (2024). Milk as a diagnostic fluid to monitor viral diseases in dairy cattle. Australian Veterinary Journal, 102(1–2), 11–18. https://doi.org/10.1111/avj.13293
Careem, R., Gapar Md Johar, M., & Khatibi, A. (2024). Baseline model for deep neural networks in resource-constrained environments: an empirical investigation. International Journal of Computing and Digital Systems, 15(1), 1147–1161. https://doi.org/10.12785/ijcds/160184
Careem, R., & Khatibi, A. (2024). Analyzing Baseline Models for Optimizing Deep Neural Networks in Resource-Constrained Environments. Journal of Engineering in Industrial Researh, 5(2), 81–89. https://doi.org/https://doi.org/10.48309/jeires.2024.2.2
Chang, H. C., Yu, L. W., Liu, B. Y., & Chang, P. C. (2024). Classification of the implant-ridge relationship utilizing the MobileNet architecture. Journal of Dental Sciences, 19(1), 411–418. https://doi.org/10.1016/j.jds.2023.08.002
Chen, G., Alsharef, A., & Jaselskis, E. (2024). Construction Jobsite Image Classification Using an Edge Computing Framework. Sensors, 24(20). https://doi.org/10.3390/s24206603
Chowdhury, M. S. (2024). Comparison of accuracy and reliability of random forest, support vector machine, artificial neural network and maximum likelihood method in land use/cover classification of urban setting. Environmental Challenges, 14(October 2023). https://doi.org/10.1016/j.envc.2023.100800
Dauda, N., Ugwuagu, S. N., Ishieze, P. U., Ugwuoke, K., Osadebe, V. O., Adewuyi, S. O., & Ukwu, U. N. (2024). Agronomic and disease responses of three watermelon (citrilus lanatus l.) varieties to fungicide spraying regimes in a tropical environment. Journal of Applied Biology and Biotechnology, 12(3), 214–222. https://doi.org/10.7324/JABB.2024.163372
Dembele, A., Mwangi, R. W., & Kube, A. O. (2024). A Lightweight Convolutional Neural Network with Hierarchical Multi-Scale Feature Fusion for Image Classification. Journal of Computer and Communications, 12(02), 173–200. https://doi.org/10.4236/jcc.2024.122011
Demilie, W. B. (2024). Plant disease detection and classification techniques: a comparative study of the performances. Journal of Big Data, 11(1). https://doi.org/10.1186/s40537-023-00863-9
Ejiyi, C. J., Qin, Z., Nnani, A. O., Deng, F., Ejiyi, T. U., Ejiyi, M. B., Agbesi, V. K., & Bamisile, O. (2024). ResfEANet: ResNet-fused External Attention Network for Tuberculosis Diagnosis using Chest X-ray Images. Computer Methods and Programs in Biomedicine Update, 5(December 2023). https://doi.org/10.1016/j.cmpbup.2023.100133
Ferdous, R. (2024). Natural field diagnosis and molecular confirmation of fungal and bacterial watermelon pathogens in Bangladesh: A case study from the Natore and Sylhet districts. PLoS ONE, 19(11 November), 1–15. https://doi.org/10.1371/journal.pone.0307245
Gai, Y., & Wang, H. (2024). Plant Disease: A Growing Threat to Global Food Security. Agronomy, 14(8), 1–11. https://doi.org/10.3390/agronomy14081615
González-Rodríguez, V. E., Izquierdo-Bueno, I., Cantoral, J. M., Carbú, M., & Garrido, C. (2024). Artificial Intelligence: A Promising Tool for Application in Phytopathology. Horticulturae, 10(3). https://doi.org/10.3390/horticulturae10030197
Hassan, E. (2024). Enhancing coffee bean classification: a comparative analysis of pre-trained deep learning models. Neural Computing and Applications, 36(16), 9023–9052. https://doi.org/10.1007/s00521-024-09623-z
Hindarto, D. (2024). Use of RESNET-50 Neural Network in Diagnosing Diseases Mango Leaves. Journal of Computer Networks, Architecture and High Performance Computing, 6(1), 220–230. https://doi.org/10.47709/cnahpc.v6i1.3308
Iftikhar, M., Kandhro, I. A., Kausar, N., Kehar, A., Uddin, M., & Dandoush, A. (2024). Plant disease management: a fine-tuned enhanced CNN approach with mobile app integration for early detection and classification. Artificial Intelligence Review, 57(7), 1–29. https://doi.org/10.1007/s10462-024-10809-z
Jouini, O., Aoueileyine, M. O.-E., Sethom, K., & Yazidi, A. (2024). Wheat Leaf Disease Detection: A Lightweight Approach with Shallow CNN Based Feature Refinement. AgriEngineering, 6(3), 2001–2022. https://doi.org/10.3390/agriengineering6030117
Kamath, V., & Renuka, A. (2024). Investigation of MobileNet-Ssd on human follower robot for stand-alone object detection and tracking using Raspberry Pi. Cogent Engineering, 11(1). https://doi.org/10.1080/23311916.2024.2333208
Kariyanna, B., & Sowjanya, M. (2024). Unravelling the use of artificial intelligence in management of insect pests. Smart Agricultural Technology, 8(July). https://doi.org/10.1016/j.atech.2024.100517
Kirac, E., & Ozbek, S. (2024). Deep Learning Based Object Detection with Unmanned Aerial Vehicle Equipped with Embedded System. Journal of Aviation, 8(1), 15–25. https://doi.org/10.30518/jav.1356997
Krstinić, D., Skelin, A. K., Slapničar, I., & Braović, M. (2024). Multi-Label Confusion Tensor. IEEE Access, 12(January), 9860–9870. https://doi.org/10.1109/ACCESS.2024.3353050
Kumar Lilhore, U., Simaiya, S., Sharma, Y. K., Kaswan, K. S., Rao, K. B. V. B., Rao, V. V. R. M., Baliyan, A., Bijalwan, A., & Alroobaea, R. (2024). A precise model for skin cancer diagnosis using hybrid U-Net and improved MobileNet-V3 with hyperparameters optimization. Scientific Reports, 14(1), 1–24. https://doi.org/10.1038/s41598-024-54212-8
Kurniawan, M., Sari, A. I., & Jong, P. A. de. (2024). Perbandingan Kinerja Metode Cnn Dalam Mengklasifikasi Orang Merokok. PROSISKO: Jurnal Pengembangan Riset Dan Observasi Sistem Komputer, 11(2), 221–229. https://doi.org/10.30656/prosisko.v11i2.8533
Lokhande, H., & Ganorkar, S. R. (2025). Object detection in video surveillance using MobileNetV2 on resource-constrained low-power edge devices. Bulletin of Electrical Engineering and Informatics, 14(1), 357–365. https://doi.org/10.11591/eei.v14i1.8131
Muhammad Yusuf, Dewi Astria Faroek, Moh Saddam S Pattanang, Anggun M, & Ristanti Salam. (2024). Sistem Pakar Diagnosa Penyakit Pada Tanaman Semangka Merah Menggunakan Metode CNN Berbasis Android. Jurnal Teknik, 13(1), 99–109. https://doi.org/http://dx.doi.org/10.31000/jt.v13i1.11830
Nakib, M. I., & Mridha, M. F. (2024). Comprehensive watermelon disease recognition dataset. Data in Brief, 53. https://doi.org/10.1016/j.dib.2024.110182
Neshat, M., Ahmed, M., Askari, H., Thilakaratne, M., & Mirjalili, S. (2024). Hybrid Inception Architecture with Residual Connection: Fine-tuned Inception-ResNet Deep Learning Model for Lung Inflammation Diagnosis from Chest Radiographs. Procedia Computer Science, 235, 1841–1850. https://doi.org/10.1016/j.procs.2024.04.175
Ozdemir, D. (2024). Reconsidering agricultural credits and agricultural production nexus from a global perspective. Food and Energy Security, 13(1), 1–13. https://doi.org/10.1002/fes3.504
Pratama, M. D., Gustriansyah, R., & Purnamasari, E. (2022). Klasifikasi Penyakit Daun Pisang menggunakan Convolutional Neural Network (CNN). Jurnal Teknologi Terpadu, 8(1), 89–94. https://doi.org/https://doi.org/10.54914/jtt.v10i1.1167
Prince, R. H., Mamun, A. Al, Peyal, H. I., Miraz, S., Nahiduzzaman, M., Khandakar, A., & Ayari, M. A. (2024). CSXAI: a lightweight 2D CNN-SVM model for detection and classification of various crop diseases with explainable AI visualization. Frontiers in Plant Science, 15(July), 1–18. https://doi.org/10.3389/fpls.2024.1412988
Saleem, S., Sharif, M. I., Sharif, M. I., Sajid, M. Z., & Marinello, F. (2024). Comparison of Deep Learning Models for Multi-Crop Leaf Disease Detection with Enhanced Vegetative Feature Isolation and Definition of a New Hybrid Architecture. Agronomy, 14(10). https://doi.org/10.3390/agronomy14102230
Shubhika, S., Patel, P., Singh, R., Tripathi, A., Prajapati, S., Rajput, M. S., Verma, G., Rajput, R. S., Pareek, N., Saratale, G. D., Chawade, A., Choure, K., & Vivekanand, V. (2024). Application of artificial intelligence techniques to addressing and mitigating biotic stress in paddy crop: A review. Plant Stress, 14(August). https://doi.org/10.1016/j.stress.2024.100592
Sow, S., Ranjan, S., Seleiman, M. F., Alkharabsheh, H. M., Kumar, M., Kumar, N., Padhan, S. R., Roy, D. K., Nath, D., Gitari, H., & Wasonga, D. O. (2024). Artificial Intelligence for Maximizing Agricultural Input Use Efficiency: Exploring Nutrient, Water and Weed Management Strategies. Phyton-International Journal of Experimental Botany, 93(7), 1569–1598. https://doi.org/10.32604/phyton.2024.052241
Tesfai, H., Saleh, H., Al-Qutayri, M., Mohammad, M. B., Tekeste, T., Khandoker, A., & Mohammad, B. (2022). Lightweight Shufflenet Based CNN for Arrhythmia Classification. IEEE Access, 10(October), 111842–111854. https://doi.org/10.1109/ACCESS.2022.3215665
Tian, S., Diao, Q., Cao, Y., Yao, D., Zhang, W., Zhang, H., Du, X., & Zhang, Y. (2024). Overview of research on virus-resistant breeding of melon. Frontiers in Plant Science, 15(December), 1–5. https://doi.org/10.3389/fpls.2024.1500246
Xan, C. J., Nugroho, H., Eswaran, S., & Siang, T. F. (2024). Effective Edge Solution for Early Detection of Rice Disease on ARM- M Microcontroller. IEEE Access, August, 148267–148280. https://doi.org/10.1109/ACCESS.2024.3470970
Xu, W., Fu, Y.-L., & Zhu, D. (2023). ResNet and its application to medical image processing: Research progress and challenges. Computer Methods and Programs in Biomedicine, 240, 107660. https://doi.org/https://doi.org/10.1016/j.cmpb.2023.107660
Xu, Z., Liu, T., Xia, Z., Fan, Y., Yan, M., & Dang, X. (2024). SSG-Net: A Multi-Branch Fault Diagnosis Method for Scroll Compressors Using Swin Transformer Sliding Window, Shallow ResNet, and Global Attention Mechanism (GAM). Sensors, 24(19). https://doi.org/10.3390/s24196237
Zhou, Y., Wang, Z., Zheng, S., Zhou, L., Dai, L., Luo, H., Zhang, Z., & Sui, M. (2024). Optimization of automated garbage recognition model based on ResNet-50 and weakly supervised CNN for sustainable urban development. Alexandria Engineering Journal, 108(June), 415–427. https://doi.org/10.1016/j.aej.2024.07.066
Zhu, F., Cao, M. Y., Zhang, Q. P., Mohan, R., Schar, J., Mitchell, M., Chen, H., Liu, F., Wang, D., & Fu, Z. Q. (2024). Join the green team: Inducers of plant immunity in the plant disease sustainable control toolbox. Journal of Advanced Research, 57, 15–42. https://doi.org/10.1016/j.jare.2023.04.016
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Comparative Study of Mobilenet and Resnet for Watermelon Leaf Disease Classification Using Deep Learning
Pages: 45-54
Copyright (c) 2025 Abdullah Ahmad, Anjar Wanto, Agus Perdana Windarto, Poningsih Poningsih

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).













