Penerapan Algoritma Text Mining dan Lexrank dalam Meringkas Teks Secara Otomatis


  • Ahmad Fauzi * Mail Universitas Budi Darma, Medan, Indonesia
  • (*) Corresponding Author
Keywords: Summarization; Automatic Text; Lexrank; News

Abstract

The growth of media and online news has allowed writers to automate research in the field of text summarization. News that offers a quick and concise concept, but in reality digital news is not organized and it takes so long to find the essence of the news. Document summarization is an effective way to get information from a document without reading the entire document. However, document summaries for Indonesian are still relatively small compared to other languages. This study develops document summarization automatically using a graph-based method, namely the Lexrank Algorithm which can be proven by research that has been tested using Indonesian news data obtained from liputan6.com. The number of sentences extracted is 25%-50% of the total sentences in the document. The results of the Lexrank summary in order of the highest weight order are = D2 = 1,433, D10 = 1,289, D3 = 1,253, ….. D8 = 0.673. The largest value from the summary will be arranged according to the order of words so as to get the summary of the news.

Downloads

Download data is not yet available.

References

K. G. Subhawa, I. Atastina, A. Nursikuwagus, F. T. Informatika, and U. Telkom, “Algoritma De ( Differential Evolution ),” pp. 0–4, 2013.

M. Nurjannah and I. Fitri Astuti, “PENERAPAN ALGORITMA TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY (TF-IDF) UNTUK TEXT MINING Mahasiswa S1 Program Studi Ilmu Komputer FMIPA Universitas Mulawarman Dosen Program Studi Ilmu Komputer FMIPA Universitas Mulawarman,” J. Inform. Mulawarman, vol. 8, no. 3, pp. 110– 113, 2013.

Badudu dan Sutan Mohammad Zain, Efektifitas Bahasa Indonesia. Jakarta: Balai Pustaka, 2010.

D. Mahdiana, “Pengadaan Barang Dengan Metodologi Berorientasi Obyek: Studi Kasus PT. Liga Indonesia,” J. Telemat., vol. 3, no. 2, pp. 36–43, 2016.

Mulyadi, Sistem Informasi Akuntansi. Jakarta: Salemba Empat, 2016.

M. M. Prof. Dr. H. Sahyar, M.S., ALGORITMA DAN PEMOGRAMathar, I.MANAJEMEN INFORMASI DAN KESEHATAN.MAN. 2016., 2018.

D. R. Radev and G. Erkan, “LexRank : Graph-based Centrality as Salience in Text Summarization,” J. Artif. Intell. Res., vol. 22, no. 1, pp. 457–479, 2004..

S. Xie and Y. Liu, “Using corpus and knowledge-based similarity measure in Maximum Marginal Relevance for meeting summarization,” ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc., vol. 2, no. 2, pp. 4985–4988, 2008, doi: 10.1109/ICASSP.2008.4518777.

F. David, Grossman and phir, Information Retrieval: Algorithm and Heuristics. Kluwer Academic Publisher, 1998.

H. W. A. Kesuma, “Penerapan Metode TF-IDF dan Cosine Similarity dalam Aplikasi Kitab Undang-Undang Hukum Dagang.” 2016.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Penerapan Algoritma Text Mining dan Lexrank dalam Meringkas Teks Secara Otomatis

Dimensions Badge
Article History
Published: 2022-02-28
Abstract View: 790 times
PDF Download: 771 times
Section
Articles