Penerapan Algoritma Maximum Marginal Relevance Dalam Peringkasan Teks Secara Otomatis


  • Ade Kurniawan * Mail Universitas Budi Darma, Medan, Indonesia
  • Mohd Irsan Humaidy Universitas Budi Darma, Medan, Indonesia
  • (*) Corresponding Author
Keywords: Summarization; Automatic Text; Maximum Marginal Relevance Method

Abstract

The search engine is a device for searching information from available documents. But the search engine will give you a lot of search results, so to find a document we have to open a meeting. Text summarization allows us to get key information from a document quickly without requiring us to read the contents of the document manually.One of the methods used is Maximum Marginal Relevance (MMR). MMR belongs to the extractive summary category (choosing the sentence in the document as the main sentence of the document content). MMR is done by weighting each sentence in the document.It is hoped that with the application of the Maximum Marginal Relevance Method this automatic summary of text can reduce the level of data redundancy and can help readers understand the meaning of the summary results and provide good information

Downloads

Download data is not yet available.

References

M. Mustaqhfiri, Z. Abidin, and R. Kusumawati, “Peringkasan Teks Otomatis Berita Berbahasa Indonesia Menggunakan Metode Maximum Marginal Relevance,” Matics, 2012, doi: 10.18860/mat.v0i0.1578.

N. F. Saraswati, Indriati, and R. S. Perdana, “Peringkasan Teks Otomatis Menggunakan Metode Maximum Marginal Relevance Pada Hasil Pencarian Sistem Temu Kembali Informasi Untuk Artikel Berbahasa Indonesia,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 11, pp. 5494–5502, 2018, doi: 10.1016/s1010-6030(01)00380-x.

E. B. Setiawan and A. T. Hartanto, “Implementasi Metode Maximum Marginal Relevance (MMR) dan Algoritma Steiner Tree untuk Menentukan Storyline Dokumen Berita,” Jurnal ULTIMATICS, vol. 8, no. 1. 2017, doi: 10.31937/ti.v8i1.499.

E. Hovy and C.-Y. Lin, “Automated text summarization and the SUMMARIST system,” p. 197, 1996, doi: 10.3115/1119089.1119121.

M. Inderjeet, “Summarization Evaluation: An Overview,” Pflege Z., vol. 62, no. 6, pp. 337–341, 2009.

F. T. Waruwu and R. Mandala, “Perbandingan Algoritma Knuth Morris Pratt dan Boyer Moore Dalam Pencocokan String Pada Aplikasi Kamus Bahasa Nias,” J. Ilm. INFOTEK, vol. 1, no. 1, pp. 36–43, 2016.

S. Andini, “Klasifikasi Dokumen Teks Menggunakan Algoritma Naive Bayes dengan Bahasa Pemprograman Java,” Teknol. Inf. Pendidik., vol. 6, no. 2, pp. 140–147, 2013, [Online]. Available: http://www.jurnal-tip.net/jurnal-resource/file/13-Vol6No2Sep2013-Silfia Andini.pdf.

S. Xie and Y. Liu, “Using corpus and knowledge-based similarity measure in Maximum Marginal Relevance for meeting summarization,” ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc., vol. 2, no. 2, pp. 4985–4988, 2008, doi: 10.1109/ICASSP.2008.4518777.

F. David, Grossman and phir, Information Retrieval: Algorithm and Heuristics. Kluwer Academic Publisher, 1998.

H. W. A. Kesuma, “Penerapan Metode TF-IDF dan Cosine Similarity dalam Aplikasi Kitab Undang-Undang Hukum Dagang.” 2016.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Penerapan Algoritma Maximum Marginal Relevance Dalam Peringkasan Teks Secara Otomatis

Dimensions Badge
Article History
Published: 2022-02-28
Abstract View: 512 times
PDF Download: 666 times
Section
Articles